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1. Introduction

At present, there is a large number of image reconstruction methods meant for many types of subjects of
inquiry (in industry, geophysics, medicine, etc.) and for obtaining various kinds of information about
them. The main criteria that characterize this or that approach include complexity, harmfulness,
resolution, and price. One of the most simple, safe, cheap, and flexible visualization methods is the
Electrical Impedance Tomography. The idea of this method is to determine the distribution of the
internal conductivity of the subject being investigated according to the measurements data on its
boundary. This, in particular, makes it possible to conduct noninvasive studies.

A considerable number of works both foreign and domestic scientists are dedicated to the issue of the
development of effective methods for the reconstruction of images in solving the electrical impedance
tomography tasks (see, for example [1–13]). In most cases, various assumptions about the distribution
of the conductivity coefficient (CC) in an interior of the investigated area (homogeneity, piecewise ho-
mogeneity with the infinite or the given finite number of values, heterogeneity, piecewise heterogeneity,
anisotropy, the possibility of separating variables, etc.) are advanced. In particular, in [3] the medium
is considered to be a piecewise-homogeneous one; the identification is carried out using a specially
developed procedure for “averaging” the intermediate iterative approximations of the CC based on the
data for all injections. In [1], it is proposed to reconstruct an image using the ideas of linearization
(functions of potentials and costs) and regularization. However, here the CC distribution function
depends on the coordinates of the domain of complex quasipotential, which, in its turn, narrows the
applicability of the approach only to cases of specific physical processes. Other restrictions are available
in [2], where it is assumed that the required coefficient allows for the separation of variables.

The purpose of this paper is to extend the suggested in [14] method of applied quasipotentials over
the case of identification of the CC in the presence of smooth local bursts in homogeneous materials (in
the form of “traditional caps”). In this case, in particular, we set the task to estimate the relationship
between the number of injections and the quality of the reconstruction.
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2. The problem statement

Consider quasiideal processes of motion of particles (in particular, electric charges) in a simply con-
nected curvilinear domain (plate, tomographic section, etc.) Gz (Fig. 1a, where the internal curves
are lines of the corresponding dynamic grid), bounded with a smooth closed curve ∂Gz = {(x, y) : x =
x̃(τ), y = ỹ(τ), 0 6 τ 6 2π, x̃(0) = x̃(2π) = x̃0, ỹ(0) = ỹ(2π) = ỹ0, where x̃(τ), ỹ(τ) are certain
continuously differentiated functions, O(x̃0, ỹ0) is the given reference point.

 

a

 

b

Fig. 1. Tomographic cross section Gz (a), corresponding area of the complex quasipotential G
(p)
ω (b).

We assume that the motion of the electric charges in the area Gz is realised according to a linear law
such as Ohm’s law, Darcy’s law, etc. j(p) = σ gradϕ(p) under the conditions divj(p) = 0 (continuity),

ϕ|ApBp = ϕ
(p)
∗ , ϕ|CpDp = ϕ∗(p) (ϕ∗(p) − ϕ

(p)
∗ > 0, ϕ

(p)
∗ , ϕ∗(p) are the applied quasipotentials) and

dϕ(p)

dn |BpCp = dϕ(p)

dn |ApDp = 0 (nonpermittivity), ϕ(p)(M)|BpCp = ϕ̄(p)(M), ϕ(p)(M)|ApDp = ϕ(p)(M),

σ∂ϕ(p)(M)/∂n|ApBp = ψ
(p)
∗ (M), σ∂ϕ(p)(M)/∂n|CpDp = ψ∗(p)(M) (additional conditions) [4], where

M is a running point of the corresponding curve; j(p) = (j
(p)
x (x, y), j

(p)
y (x, y)) is the density (local

velocity) of current; ϕ(p) = ϕ(p)(x, y) is the quasipotential of the field such as ApBp and CpDp are the
equipotential lines; BpCp and ApDp are the impenetrable boundary stream lines; Ap, Bp, Cp, Dp are
the denoted points on ∂Gz; p = 1, 2, . . . is a parameter-number of injections (see, e.g. [1, 3, 17]); n is
an external normal to the corresponding section of the boundary of this area [14]; ψ(p) = ψ(p)(x, y) is
the function of stream (so we have, so called, a model of shunt [1, 3, 7, 17]). The functions ϕ̄(p)(M) =

ϕ̄(p)(τ, . . .) (τ
(p)
C 6 τ 6 τ

(p)
B ), ϕ(p)(M) = ϕ(p)(τ, . . .) (τ

(p)
A 6 τ 6 τ

(p)
D ), ψ

(p)
∗ (M) = ψ

(p)
∗ (τ, . . .) (τ

(p)
B 6

τ 6 τ
(p)
A ), ψ∗(p)(M) = ψ∗(p)(τ, . . .) (τ

(p)
D 6 τ 6 τ

(p)
C ), as in [3], can be constructed by interpolating

experimentally obtained values ϕ̄
(p)

ī(p)
, ϕ

(p)

i(p)
, ψ

(p)

∗j(p)∗

, ψ
∗(p)
j∗(p)

for some τ = τ̄
(p)

ī(p)
, τ = τ

(p)

i(p)
, τ = τ

(p)

∗j(p)∗

,

τ = τ
∗(p)
j∗(p)

in the intervals BpCp, ApDp, ApBp, CpDp, correspondingly (ϕ
(p)
∗ 6 ϕ

(p)

i(p)
6 ϕ∗(p), ϕ

(p)
∗ 6

ϕ̄
(p)

ī(p)
6 ϕ∗(p), ψ

(p)

∗j(p)∗

> 0, ψ
∗(p)
j∗(p)

> 0, 0 6 ī(p) 6 m̄∗(p) + 1, 0 6 i(p) 6 m
(p)
∗ + 1, 0 6 j

(p)
∗ 6 n

(p)
∗ + 1,

0 6 j∗(p) 6 n∗(p) + 1). The CC being searched for in the form of a sum of its main part and local
bursts, namely:

σ (x, y, χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys) = χ+

s∑

k=1

αk
1 + ((x− xk)2 + (y − yk)2)/εk

, (1)

where χ, αk, εk, xk, yk(k = 1, . . . , s) are parameters to be found in the course of solving the problem.
The injections of current (with the corresponding physical measurements) through a tomographic

cross section will be modeled (in the first place) by sets of the values {τ (p)A , τ
(p)
B , τ

(p)
C , τ

(p)
D }, according to

which, Ap = (x̃(τ
(p)
A ), ỹ(τ

(p)
A )), Bp = (x̃(τ

(p)
B ), ỹ(τ

(p)
B )), Cp = (x̃(τ

(p)
C ), ỹ(τ

(p)
C )), Dp = (x̃(τ

(p)
D ), ỹ(τ

(p)
D ))

(the corresponding boundary of the area Gz with the given 4 denoted points we indicate by ∂G
(p)
z ).

The task consists in calculating electrodynamic grids, velocity fields, and in reconstructing the CC
image.
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3. Problems of analysis and synthesis

Introducing the stream function ψ(p)(x, y), which are complex conjugate to the functions ϕ(p)(x, y)
(p = 1, p̃), by analogy with [1–3,14–16], we arrive at a series of more general boundary-value problems

on quasiconformal mappings ω = ω(p)(z) = ϕ(p)(x, y) + iψ(p)(x, y) of physical areas G
(p)
z (Fig. 1a) to

the corresponding areas of the complex quasipotential G
(p)
ω (Fig. 1b):

σ
∂ϕ(p)

∂x
=
∂ψ(p)

∂y
, σ

∂ϕ(p)

∂y
= −∂ψ

(p)

∂x
; (2)

ϕ(p)
∣
∣
ApBp

= ϕ
(p)
∗ , ϕ(p)

∣
∣
CpDp

= ϕ∗(p), ψ(p)
∣
∣
ApDp

= 0, ψ(p)
∣
∣
BpCp

= Q(p); (3)

∫

MN
σ
∂ϕ(p)

∂n
dl = Q(p), M ∈ BpCp, N ∈ ApDp;

ϕ(p)(M)
∣
∣
BpCp

= ϕ̄(p)(M), ϕ(p)(M)
∣
∣
ApDp

= ϕ(p)(M),

ψ(p)(M)
∣
∣
ApBp

= Ψ
(p)
∗ (M), ψ(p)(M)

∣
∣
CpDp

= Ψ∗(p)(M), (4)

where G
(p)
ω = {(ϕ,ψ) : ϕ(p)

∗ 6 ϕ 6 ϕ(p)∗, 0 6 ψ 6 Q(p)}; Q(p) are flows of the vector field (cur-

rent) through the contact surface (ApBp and CpDp), Ψ
(p)
∗ (M) =

∫

ApM
ψ
(p)
∗ (M)dl, Ψ∗(p)(M) =

∫

DpM
ψ∗(p)(M)dl; dl is the element of an arc of the corresponding curve.

The work [14] substantiates the expediency of the transition from the direct problems (on quasi-
conformal mappings Gz to Gω) to the inverse ones. The inverse nonlinear boundary value problems

on quasiconformal mappings z = z(p)(ω) = x(p)(ϕ,ψ) + iy(p)(ϕ,ψ) of the areas G
(p)
ω to G

(p)
z with the

unknowns ϕ(p)(x, y) and ψ(p)(x, y) by analogy with [1–3, 14, 15], we reduce to the solving the system
of elliptic equations:







∂

∂ϕ

(

1

σ

∂x(p)

∂ϕ

)

+
∂

∂ψ

(

σ
∂x(p)

∂ψ

)

= 0,

∂

∂ϕ

(

1

σ

∂y(p)

∂ϕ

)

+
∂

∂ψ

(

σ
∂y(p)

∂ψ

)

= 0, ∀(x(p), y(p)) ∈ G(p)
z

(5)

under the conditions:

x(p)
(
ϕ
(p)
∗ , ψ

)
= x̃

(
τ
(p)
∗ (ψ)

)
, y(p)

(
ϕ
(p)
∗ , ψ

)
= ỹ

(
τ
(p)
∗ (ψ)

)
,

x(p)
(
ϕ,Q(p)

)
= x̃

(
τ̄ (p)(ϕ)

)
, y(p)

(
ϕ,Q(p)

)
= ỹ

(
τ̄ (p)(ϕ)

)
,

x(p)
(
ϕ∗(p), ψ

)
= x̃

(
τ∗(p)(ψ)

)
, y(p)

(
ϕ∗(p), ψ

)
= ỹ

(
τ∗(p)(ψ)

)
,

x(p)(ϕ, 0) = x̃
(
τ (p)(ϕ)

)
, y(p)(ϕ, 0) = ỹ

(
τ (p)(ϕ)

)
; (6)







x̃′(τ)
∂y(p)

(
ϕ
(p)
∗ , ψ

(p)
∗ (τ, . . .)

)

∂ϕ
− ỹ′(τ)

∂x(p)
(
ϕ
(p)
∗ , ψ

(p)
∗ (τ, . . .)

)

∂ϕ
= 0, τ ∈

[
τ
(p)
B ; τ

(p)
A

]
,

x̃′(τ)
∂y(p)

(
ϕ∗(p), ψ∗(p)(τ, . . .)

)

∂ϕ
− ỹ′(τ)

∂x(p)
(
ϕ∗(p), ψ∗(p)(τ, . . .)

)

∂ϕ
= 0, τ ∈

[
τ
(p)
D ; τ

(p)
C

]
,

x̃′(τ)
∂y(p)

(
ϕ(p)(τ, . . .), 0

)

∂ψ
− ỹ′(τ)

∂x(p)
(
ϕ(p)(τ, . . .), 0

)

∂ψ
= 0, τ ∈

[
τ
(p)
A ; τ

(p)
D

]
,

x̃′(τ)
∂y(p)

(
ϕ̄(p)(τ, . . .), Q(p)

)

∂ψ
− ỹ′(τ)

∂x(p)
(
ϕ̄(p)(τ, . . .), Q(p)

)

∂ψ
= 0, τ ∈

[
τ
(p)
C ; τ

(p)
B

]
,

(7)
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where τ = τ
(p)
∗ (ψ), τ = τ̄ (p)(ϕ), τ = τ∗(p)(ψ), τ = τ (p)(ϕ) (ϕ

(p)
∗ 6 ϕ 6 ϕ∗(p), 0 6 ψ 6 Q(p)) are

functions constructed by interpolating their experimentally obtained values τ
(p)
∗j∗ , τ̄

(p)

ī
, τ

∗(p)
j∗ , τ

(p)
i at

some arguments Ψ
(p)
∗j∗, ϕ̄

(p)

ī
, Ψ

∗(p)
j∗ , ϕ

(p)
i in the intervals ApBp, BpCp, CpDp and ApDp, correspondingly.

Let us reconstruct the CC, provided that the functional is minimized

Φ
(
x(1), . . . , x(p̃), y(1), . . . , y(p̃), χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys

)

=

p̃
∑

p=1

(

σ
(
x(p), y(p), χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys

)
− f

(
x(p), y(p)

))2
→ min, (8)

where f
(
x(p), y(p)

)
=

((
∂x(p)

∂ϕ

)2
+
(
∂y(p)

∂ϕ

)2
)1/2((

∂x(p)

∂ψ

)2
+
(
∂y(p)

∂ψ

)2
)−1/2

.

4. The difference analogue of the problem

The difference analogue of the problem (5)–(8) in the uniform grid domains G
γ(p)
ω is obtained analo-

gously to [1–3,14, 20].
Using the “cross” scheme, the difference analogues of the elliptic equations (5) in the grid domains

G
γ(p)
ω can be represented as follows







x
(p)
i,j =

1

2
(

1 + γ(p)2σ
γ(p)2
i,j

)

(

x
(p)
i+1,j + x

(p)
i−1,j + γ(p)2σ

γ(p)2
i,j

(
x
(p)
i,j−1 + x

(p)
i,j+1

)

+
γ(p)2σ

γ(p)
i,j

4

(
∂σ

γ(p)
i,j

∂x

(
x
(p)
i,j+1 − x

(p)
i,j−1

)
+
∂σ

γ(p)
i,j

∂y

(
y
(p)
i,j+1 − y

(p)
i,j−1

)
)
(
x
(p)
i,j+1 − x

(p)
i,j−1

)

− 1

4σ
γ(p)
i,j

(
∂σ

γ(p)
i,j

∂x

(
x
(p)
i+1,j − x

(p)
i−1,j

)
+
∂σ

γ(p)
i,j

∂y

(
y
(p)
i+1,j − y

(p)
i−1,j

)
)
(
x
(p)
i+1,j − x

(p)
i−1,j

)

)

,

y
(p)
i,j =

1

2
(

1 + γ(p)2σ
γ(p)2
i,j

)

(

y
(p)
i+1,j + y

(p)
i−1,j + γ(p)2σ

γ(p)2
i,j

(
y
(p)
i,j−1 + y

(p)
i,j+1

)

+
γ(p)2σ

γ(p)
i,j

4

(
∂σ

γ(p)
i,j

∂x

(
x
(p)
i,j+1 − x

(p)
i,j−1

)
+
∂σ

γ(p)
i,j

∂y

(
y
(p)
i,j+1 − y

(p)
i,j−1

)
)
(
y
(p)
i,j+1 − y

(p)
i,j−1

)

− 1

4σ
γ(p)
i,j

(
∂σ

γ(p)
i,j

∂x

(
x
(p)
i+1,j − x

(p)
i−1,j

)
+
∂σ

γ(p)
i,j

∂y

(
y
(p)
i+1,j − y

(p)
i−1,j

)
)
(
y
(p)
i+1,j − y

(p)
i−1,j

)

)

,

(9)

where γ(p) are the quasiconformal invariants [14] for the corresponding domains G
γ(p)
ω =

{(
ϕ
(p)
i , ψ

(p)
j

)
: ϕ

(p)
i = ϕ

(p)
∗ + i∆ϕ(p), i = 0,m(p) + 1; ψ

(p)
j = j∆ψ(p), j = 0, n(p) + 1; ∆ϕ(p) = ϕ(p)∗−ϕ(p)

∗

m(p)+1
,

∆ψ(p) = Q(p)

n(p)+1
, γ(p) = ∆ϕ(p)

∆ψ(p) ,m
(p), n(p) ∈ N

}

; x
(p)
i,j = x(p)

(
ϕ
(p)
i , ψ

(p)
j

)
, y

(p)
i,j = y(p)

(
ϕ
(p)
i , ψ

(p)
j

)
,

σ
γ(p)
i,j±1/2 = σ

((
x
(p)
i,j±1 + x

(p)
i,j

)
/2,
(
y
(p)
i,j±1 + y

(p)
i,j

)
/2
)

, σ
γ(p)
i±1/2,j = σ

((
x
(p)
i±1,j + x

(p)
i,j

)
/2,
(
y
(p)
i±1,j + y

(p)
i,j

)
/2
)

,
(
x
(p)
i,j , y

(p)
i,j

)
∈ G

(p)
z .

The conditions (3) are approximated by such point relations

x
(p)
0,j = x̃

(
τ
(p)
∗ (ψj)

)
, y

(p)
0,j = ỹ

(
τ
(p)
∗ (ψj)

)
, x

(p)

i,n(p)+1
= x̃

(
τ̄ (p)(ϕi)

)
,

y
(p)

i,n(p)+1
= ỹ

(
τ̄ (p)(ϕi)

)
, x

(p)

m(p)+1,j
= x̃

(
τ∗(p)(ψj)

)
, y

(p)

m(p)+1,j
= ỹ

(
τ∗(p)(ψj)

)
,
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x
(p)
i,0 = x̃

(
τ (p)(ϕi)

)
, y

(p)
i,0 = ỹ

(
τ (p)(ϕi)

) (
0 6 i 6 m(p) + 1, 0 6 j 6 n(p) + 1

)
. (10)

The conditions of orthogonality (7) on the boundary of the area are approximated by the following
point and difference equations







x̃′(τ)
(
y
(p)
1,j − y

(p)
0,j

)
− ỹ′(τ)

(
x
(p)
1,j − x

(p)
0,j

)
= 0, τ ∈

[
τ
(p)
B ; τ

(p)
A

]
,

x̃′(τ)
(
y
(p)
m,j − x

(p)
m+1,j

)
− ỹ′(τ)

(
x
(p)
m,j − x

(p)
m+1,j

)
= 0, τ ∈

[
τ
(p)
D ; τ

(p)
C

]
,

x̃′(τ)
(
y
(p)
i,n − x

(p)
i,n+1

)
− ỹ′(τ)

(
x
(p)
i,n − x

(p)
i,n+1

)
= 0, τ ∈

[
τ
(p)
C ; τ

(p)
B

]
,

x̃′(τ)
(
y
(p)
i,1 − y

(p)
i,0

)
− ỹ′(τ)

(
x
(p)
i,1 − x

(p)
i,0

)
= 0, τ ∈

[
τ
(p)
A ; τ

(p)
D

]

(
1 6 i 6 m(p), 1 6 j 6 n(p)

)
.

(11)

The functional (8) we rewrite for all internal nodal points
(
x
(p)
i,j , y

(p)
i,j

)
(p = 1, p̃, i = 1,m(p), j =

1, n(p)) as follows

Φ
(

x(1), . . . , x(p̃), y(1), . . . , y(p̃), χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys

)

=

p̃
∑

p=1

m(p)
∑

i=1

n(p)
∑

j=1

(

σ
(

x
(p)
i,j , y

(p)
i,j , χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys

)

− fγ
(

x
(p)
i−1,j−1, y

(p)
i−1,j+1, x

(p)
i+1,j−1, y

(p)
i+1,j+1

))2

→ min, (12)

where

fγ
(

x
(p)
i−1,j−1, y

(p)
i−1,j+1, x

(p)
i+1,j−1, y

(p)
i+1,j+1

)

=

(((
x
(p)
i+1,j−1 − x

(p)
i−1,j−1

)2
+
(
y
(p)
i+1,j−1 − y

(p)
i−1,j−1

)2
)0.5

+
((
x
(p)
i+1,j+1 − x

(p)
i−1,j+1

)2
+
(
y
(p)
i+1,j+1 − y

(p)
i−1,j+1

)2
)0.5

)

×
(((

x
(p)
i−1,j+1 − x

(p)
i−1,j−1

)2
+
(
y
(p)
i−1,j+1 − y

(p)
i−1,j−1

)2
)0.5

+
((
x
(p)
i+1,j+1 − x

(p)
i+1,j−1

)2
+
(
y
(p)
i+1,j+1 − y

(p)
i+1,j−1

)2
)0.5

)−1 1

γ(p)
.

5. Solving algorithm

The algorithm for solving the initial problem consists in the alternate parameterization of the internal

nodes of the grid domains G
γ(p)
z , the CC, and using the ideas of the method of block iteration [18].

Namely: we set the number of injections p̃, the boundary of the domains G
(p)
z (by the functions

x = x̃(τ), y = ỹ(τ)), the parameters τ
(p)
A , τ

(p)
B , τ

(p)
C , τ

(p)
D , q (q > 1 is responsible for the number

of iterations of the refinement on internal nodes for a specific CC), the quasipotentials ϕ
(p)
∗ , ϕ∗(p),

and losses Q(p), m(p), n(p) are the parameters of the partition of the domains G
γ(p)
ω (preferably so

that Q(p)

ϕ∗(p)−ϕ(p)
∗

n(p)+1
m(p)+1

≈ 1). With this, we calculate the coordinates of the angular points Ap =
(
x̃(τ

(p)
A ), ỹ(τ

(p)
A )
)
, Bp =

(
x̃(τ

(p)
B ), ỹ(τ

(p)
B )
)
, Cp =

(
x̃(τ

(p)
C ), ỹ(τ

(p)
C )
)
, Dp =

(
x̃(τ

(p)
D ), ỹ(τ

(p)
D )
)

on ∂G
(p)
z ,

∆ϕ(p) = ϕ∗(p)−ϕ(p)
∗

m(p)+1
, ∆ψ(p) = Q(p)

n(p)+1
and the values of quasiconformal invariants γ(p) = ∆ϕ(p)/∆ψ(p).
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Setting the values of the stream functions ψ
(p)
∗j , ψ

∗(p)
j and the potentials ϕ̄

(p)
i , ϕ

(p)
i for some arguments

τ
(p)
∗j , τ

∗(p)
j , τ̄

(p)
i , τ

(p)
i (results of physical measurements), respectively, by means of interpolation we

calculate (10), after that we find the coordinates of the nodes x
(p)
0,j , y

(p)
0,j , x

(p)

i,n(p)+1
, y

(p)

i,n(p)+1
, x

(p)

m(p)+1,j
,

y
(p)

m(p)+1,j
, x

(p)
i,0 , y

(p)
i,0 (0 6 i 6 m(p) + 1, 0 6 j 6 n(p) + 1, p = 1, p̃) on ∂G

(p)
z . The initial approximations

x
(p,0)
i,j , y

(p,0)
i,j and parameters χ(0), α

(0)
k , ε

(0)
k , x

(0)
k , y

(0)
k (k = 1, . . . , s), which define the CC, we form, for

example, as follows: x
(p,0)
i,j =

(
x
(p)
i,0 + x

(p)

i,n(p) + x
(p)
0,j + x

(p)

m(p),j

)
/4, y

(p,0)
i,j =

(
y
(p)
i,0 + y

(p)

i,n(p) + y
(p)
0,j + y

(p)

m(p),j

)
/4

(1 6 i 6 m(p), 1 6 j 6 n(p), p = 1, p̃), χ(0) = 1, α
(0)
k = 0, ε

(0)
k = 1, x

(0)
k = 0, y

(0)
k = 0 (k = 1, . . . , s).

The iterative process of reconstruction consists of the following steps: refine on the coordinates
of the boundary nodes (using the difference analogues of the Cauchy-Riemann type) by solving the
system of equations [3]

{

x
(p,l+1)
1,j = x0,j + 0.5γ(p)σ

(l)
0,j

(
y
(p,l)
0,j+1 − y

(p,l)
0,j−1

)
,

y
(p,l+1)
1,j = y0,j − 0.5γ(p)σ

(l)
0,j

(
x
(p,l)
0,j+1 − x

(p,l)
0,j−1

)
;

{

x
(p,l+1)
m,j = xm+1,j − 0.5γ(p)σ

(l)
m+1,j

(
y
(p,l)
m+1,j+1 − y

(p,l)
m+1,j−1

)
,

y
(p,l+1)
m,j = ym+1,j + 0.5γ(p)σ

(l)
m+1,j

(
x
(p,l)
m+1,j+1 − x

(p,l)
m+1,j−1

)
;

{

x
(p,l+1)
i,1 = xi,0 − 0.5γ(p)σ

(l)
i,0

(
y
(p,l)
i+1,0 − y

(p,l)
i−1,0

)
,

y
(p,l+1)
i,1 = yi,0 + 0.5γ(p)σ

(l)
i,0

(
x
(p,l)
i+1,0 − x

(p,l)
i−1,0

)
;







x
(p,l+1)
i,n = xi,n+1 + 0.5γ(p)σ

(l)
i,n+1

(
y
(p,l)
i+1,n+1 − y

(p,l)
i−1,n+1

)
,

y
(p,l+1)
i,n = yi,n+1 − 0.5γ(p)σ

(l)
i,n+1

(
x
(p,l)
i+1,n+1 − x

(p,l)
i−1,n+1

)

with respect to
(
x
(p,l+1)
1,j , y

(p,l+1)
1,j

)
,
(
x
(p,l+1)
m,j , y

(p,l+1)
m,j

)
,
(
x
(p,l+1)
i,1 , y

(p,l+1)
i,1

)
,
(
x
(p,l+1)
i,n , y

(p,l+1)
i,n

)
, respectively

(1 6 i 6 m(p), 1 6 j 6 n(p), 1 6 p 6 p̃); according to (10) rifine on the coordinates of the internal nodes

for i = 2,m(p) − 1, j = 2, n(p) − 1, p = 1, p̃ [1, 3, 14]; repeat this procedure q times; using one of the
methods of global optimization (see, for example, [19]) minimize the functional (12) for the required

χ(l), α
(l)
k , ε

(l)
k , x

(l)
k , y

(l)
k (here l = 0, 1, . . . is the number of the itaeration step, k = 1, . . . , s); check the

conditions for the completion of the iterative process, among which there can be [3,14] the stabilization
of the boundary nodes, the CC, the parameter of the degree of quasiconformality, the values of losses,
etc. (1 6 p 6 p̃, 1 6 i 6 m(p), 1 6 j 6 n(p)). In the case when at least one of these conditions is
not satisfied, the iteration process is restarted, otherwise we construct the corresponding reconstructed
image and, if it is necessary, electrodynamic grids, the domains of complex quasipotential, or calculate
the fields of current densities by the formula j(p) = σ(x, y) · gradϕ(p) etc.

It should be noted that here, as in [3] (in contrast to [1,2,14,15]), there is no need to use the formulas
to refine on the boundary nodes (their coordinates are a priori known), which, of course, accelerates
the process of reconstruction of an image. In order to save computing time, it is also allowed using the
formula (12) only for the selected points.

In order to increase the accuracy of quasiconformal mappings (first of all, in the vicinity of the
angular boundary points), it is possible to introduce a specially developed procedure of “replacing” the
smoothness at the points Ap, Bp, Cp, Dp with the orthogonality of the corresponding stream lines and
the equipotential lines.

We also note that instead of giving the coordinates of the boundary nodes by the formula (10) (by
interpolating the results of physical measurements), one can immediately select them so that the local
differences in the values of the stream function or the potential between them at the corresponding
neighbouring points are to be constant within the injection limits.
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6. Numerical analysis

Let us present the results of numerical analysis with x̃(τ) = 150 cos τ , ỹ(τ) = 100 sin τ , m(p) = 100;

τ
(p)
A = π

8 + (p− 1) π2p̃ + π, τ
(p)
B = τ

(p)
A − π

4 , τ
(p)
C = τ

(p)
A − π, τ

(p)
D = τ

(p)
C − π

4 ; ϕ
(p)
∗ = 0, ϕ∗(p) = 1, χ(0) = 1,

α
(0)
k = 0, ε

(0)
k = 1, x

(0)
k = 0, y

(0)
k = 0, 0.1 6 χ 6 1.5, 0 6 αk 6 2, 10−3 6 εk 6 106, −150 6 xk 6 150,

−100 6 yk 6 100 (k = 1, . . . , s). The values of the parameters Q(p), ψ
(p)
∗j , ψ

∗(p)
j ϕ̄

(p)
i , ϕ

(p)
i , s, χ, αk, εk,

xk, yk (k = 1, . . . , s) are given if there is a possibility of estimating the accuracy of the algorithm [21]
in the way of the corresponding comparisons (numerical calculations of characteristic parameters and
given reference standards values).

 

a

 

b

 

c

 

d

 

e

 

f

 

Fig. 2. Distributions of the CC for the example with one local burst.

In Fig. 2a, an etalon is shown for s = 1, χ = 0.5, α1 = 1, ε1 = 200, x1 = −95, y1 = −12. And in
Table 1 and Fig. 2b– 2e, the results of calculations are shown for the characteristic parameters Φ, χ,
α1, ε1, x1, y1 and under the condition that only the first of the forty injections (p̃ = 40) is performed,
for the twentieth injection, for first twenty injections, and for all forty injections. We can note that
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a certain increase in the total number of injections significantly improves the reconstruction of the
image in comparison with the results of the individual injections, but performing too much of them,
as expected, has no meaning (the results of the reconstruction of five, twenty, and forty injections are
almost coincident).

Table 1. Distributions of the CC for the example with one local burst.

p Φ χ α1 ε1 x1 y1
а – – 0.5 1 200 −95 −12

b 1 2.4966 0.4857 0.4495 993.0104 −82.576 −17.6735

c 20 6.6754 0.4421 1.9348 278.815 −74.9674 −7.5969

d 1, 9, 17, 25, 33 28.498 0.4722 1.198 267.8533 −81.2635 −8.7357

e 1, 2, 3, . . . , 20 98.7319 0.4744 1.1712 274.7286 −80.7618 −8.4726

f 1, 2, 3, . . . , 40 220.3432 0.4727 1.1719 278.497 −80.7184 −8.7694

Table 2 and Fig. 3 demonstrate the results of calculations and the reconstruction of images in the
presence of two and three bursts of the CC for the corresponding reference standards values s = 2,
χ = 0.5, α1 = 1, ε1 = 200, x1 = −95, y1 = −12, α2 = 0.5, ε2 = 800, x2 = 0, y2 = 50; s = 3, χ = 0.5,
α1 = 1, ε1 = 200, x1 = −80, y1 = 30, α2 = 0.5, ε2 = 1000, x2 = 50, y2 = 50, α3 = 0.3, ε3 = 2000,
x3 = 0, y3 = −80.

Table 2. Distributions of the CC for the examples of two (a, b) and three (c, d) local bursts.

s Φ χ α1 ε1 x1 y1 α2 ε2 x2 y2 α3 ε3 x3 y3
а 2 – 0.5 1 200 −95 −12 0.5 800 0 50 – – – –

b 2 132 0.22 0.56 10505 11 24 0.84 509 −96 −10 – – – –

c 3 – 0.5 1 200 −80 30 0.5 1000 50 50 0.3 2000 0 −80

d 3 157 0.21 0.5 1852 −88 17 0.57 8944 47 31 0.3 2487 −6 −84

 

a

 

b

 

c

 

d

Fig. 3. Distributions of the CC for the examples with two (a, b) and three (c, d) local bursts.
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Note that here (for the simplification of the statements) were considered the bursts of homogeneities
(the procedure for the reconstruction of bursts of well-studied heterogeneous media can be similarly
described). We also note that the developed algorithm is sufficiently open for various additions, gener-
alizations, etc., in particular, if the process is unstable, there is a possibility, as in [1,7], to “introduce”
the regularization procedure of the Tikhonov type, when instead of (8), the functional is considered

Φ
(

x(1), . . . , x(p̃), y(1), . . . , y(p̃), χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys

)

=

p̃
∑

p=1

(

σ
(
x(p), y(p), χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys

)
− f

(
x(p), y(p)

))2

+ η · Ω
[

x(1), . . . , x(p̃), y(1), . . . , y(p̃), χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys

]

→ min, (13)

where Ω
[
x(1), . . . , x(p̃), y(1), . . . , y(p̃), χ, α1, . . . , αs, ε1, . . . , εs, x1, . . . , xs, y1, . . . , ys

]
is the stabilizing

functional, η is the parameter of regularization.

7. Conclusions

In the article a numerical method of quasiconformal mappings is developed for the identification of
parameters of local bursts of the coefficient of conductivity of the medium according to the data of
the tomography of the applied quasipotentials, based on which the problem of analysis in the iterative
process is reduced to the application of numerical methods of quasiconformal mappings, and the
problem of synthesis is reduced to the solving the parametric identification problem. The use of a
specially developed procedure for “averaging” intermediate iterative approximations of the piecewise
homogeneous CC according to the data on all injections is extended over the case of the inhomogeneous
medium.

We see that, as it should be expected, for a qualitative reconstruction of an image (identification of
five parameters of the burst), it is necessary, generally speaking, to carry out five injections, although
previous (rough reconstruction) can be obtained even with one injection (under condition of successful
application of potentials).

An essential feature of the developed algorithm is the possibility of its comparatively easy paral-
lelization and stopping of the calculation procedure if only some of the conditions for the completion of
the process hold with the automatic determination of those parts of the physical area where large er-
rors of computations occur, what makes it possible to use the computing time more economically. The
latter is relevant, in particular, in the case of the so-called “dead zones” and “zones of large gradients”
that arise near the special angular points of smooth boundary lines of the corresponding domains.

For the future, we plan to extend the algorithm over the spatial case and the cases of the presence
of several areas of application of potentials.
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Числовий метод квазiконформних вiдображень iдентифiкацiї
параметрiв середовищ за даними томографiї прикладених

квазiпотенцiалiв

БомбаА., БойчураМ.

Рiвненський державний гуманiтарний унiверситет
вул. С. Бандери, 12, 33000, Рiвне, Україна

Розглянуто задачу iдентифiкацiї параметрiв сплескiв коефiцiєнта провiдностi сере-
довища за даними томографiї прикладених квазiпотенцiалiв. Запропоновано метод
реконструкцiї зображення, згiдно з яким задача аналiзу зводиться до застосування
числових методiв квазiконформних вiдображень, а задача синтезу — до розв’язання
задачi параметричної iдентифiкацiї. Наведено результати числових експериментiв та
проведено їх аналiз.

Ключовi слова: томографiя прикладених квазiпотенцiалiв, квазiконформнi вiд-
ображення, iдентифiкацiя, нелiнiйнi задачi.
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