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The Cauchy–Poisson method is extended to n-dimensional Euclidean space so that to
obtain partial differential equations (PDEs) of a higher order. The application in the
construction of hyperbolic approximations is presented, generalizing and supplementing
the previous investigations. Restrictions on derivatives in Euclidean space are introduced.
The hyperbolic degeneracy by parameters and its realization in the form of necessary
and sufficient conditions are considered. As a particular case of 4-dimensional Euclidean
space, keeping operators up to the 6th order, we obtain a generalized hyperbolic equation
of transverse (bending) vibrations of plates with coefficients depending only on the Poisson
number. Numerical calculations are carried out and presented. This equation includes,
as special cases, all the known equations of Bernoulli–Euler, Kirchhoff, Rayleigh, Timo-
shenko. It should be noted that the refined equation of bending oscillations of a beam,
firstly presented by Timoshenko, must be considered as the development of Maxwell’s and
Einstein’s investigations on the perturbation propagation with finite velocity in media.
For the first time, the conformity with the Cosserat theory is noted.
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1. Introduction

Modeling wave processes in real systems leads to the need to investigate degenerate operators. This
problem has always been relevant in mathematics. Great interest is the modeling wave propagation in
degenerate hyperbolic systems so that the finite velocity of perturbation propagation is satisfied.

The construction of hyperbolic equations describing real phenomena of perturbation propagation
with finite velocity is an important problem. Such modeling is based on Maxwell’s research (Maxwell,
1864) [1]. After modeling electromagnetic field, using a deep analysis Maxwell showed the finite veloc-
ity of perturbation propagation in the gas, in contrast to the traditional Boltzmann model (Maxwell,
1867) [2]. The construction of hyperbolic models as the development of Maxwell’s investigations was
realized by Einstein (Einstein, 1950) [3] and in the study of gravitational waves developed by Weber
(1950) [4]. Over the years of research and at last experimental detection of the speed of propaga-
tion of gravitational waves, the Nobel Prize has been awarded to researchers in 2017: B.C.Barish,
K. S.Thorne, R.Weiss.

After Maxwell, generalized hyperbolic models describing the propagation of heat, diffusion, and
others have been developed, cited in (Selezov and Krivonos, 2015) [5]. We also note the latest study on
the injection of a medical preparation into tissue, where a new generalization of the diffusion equation
to a hyperbolic equation is presented (Selezov & Kryvonos, 2017) [6]. From the mathematical point
of view, in essence, a second-order parabolic operator (predicting the perturbation propagation with
infinite velocity) was generalized to a hyperbolic operator of the second order (but now describes the
perturbation propagation with finite velocity). The method of solving the problem of elastodynamics
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for a layer by expansion in a small thickness coordinate was proposed in 1828-29 in works (Cauchy,
1828) [7] and (Poisson, 1829) [8]. This reduces the dimensionality of the problem by one, i.e. reduces
the three-dimensional problem to a two-dimensional one which was essentially used in the construction
of the theory of plates and shells. The method was generalized to n-dimensional Euclidean space in
2000 by Selezov (Selezov, 2000) [9] and without assumptions was considered in (Selezov and Kryvonos,
2015) [5]. The study presented earlier in the n-dimensional Euclidean space requires the introduction
of additional restrictions on degeneracy with respect to small parameters.

In this paper we present a generalization of the Cauchy–Poisson method to n-dimensional Euclidean
space and introduce a restriction on the derivatives. We consider hyperbolic degeneracy and the
construction of hyperbolic approximations of higher order. In the particular case n = 4, the wave
hyperbolic equations for the elastic layer are obtained. This approximation is of a higher order,
in contrast to known studies. It is especially first noted that Timoshenko’s equation for flexural
oscillations of a beam is a non-trivial generalization of the classical theory.

2. Generalization of the Cauchy–Poisson method on n-dimensional Euclidean space R
n

In Euclidean space R
n with coordinates xq, q = 1, n, we consider a mathematical model represented

by a finite system of PDEs, for which a boundary value problem is posed in a domain Ω × [0,Xm],
Xm > 0 bounded by hypersurfaces xs = ±hs, hs > 0 (the index s is fixed):

Ω =
{
x ∈ R

n : −∞ < (x1, x2, . . . , xs−1, xs+1, . . . , xn−1) <∞, xn > 0, −hs 6 xs 6 hs
}
.

We assume that the hypersurfaces xs = ±hs are removed from the middle hypersurface xs = 0
and that the expansion is relative to xs = 0. We consider the case when conditions are given on
hypersurfaces xs = ±hs. It is assumed that the model depends on a finite number ν of parameters
εr, r = 1, ν. Formally, such a model can be defined as a system k of PDEs of the p-th order with k
unknowns ui, (i = 1, k) and n arguments (Dunford & Schwartz, 1969) [10]

Fi

(
x1, . . . , xn;u1, . . . , uk;u1,1, . . . , uk,n; . . . , u1, 1...1

︸︷︷︸
P times

, . . . , uk, n...n
︸︷︷︸
P times

; ε1, . . . , εν
)
= Pi(x

1, . . . , xn) ∈ Ω.

(1)
The following system of boundary conditions on hypersurfaces xs = −hs, xs = hs is given

fj
(
x1, . . . , xn;u1, . . . , uk;u1,1, . . . , uk, n...n

︸︷︷︸
(P−1) times

; ε1, . . . , εν
)∣
∣
xs=±hs = Q±

j , j = 1, (k · p). (2)

Here the index after the “comma” denotes differentiation with respect to the corresponding coordi-
nate. In general case p 6= n. The function Fl depends on all possible partial derivatives of the p-th order
inclusive, the position of the hypersurface can depend on ui and their derivatives. The solution of the
boundary value problem (1), (2) consists in the definition of functions ui, which transform equations (1)
into identities, and in the choice of the set of these functions such that they satisfy conditions (2).

The assumption of smallness of parameters. The parameters εν are assumed to be small,
εν ≪ 1. As a result, degeneration by parameters ε1, . . . , εν can be considered. In the case of parameter
degeneracy, the problem can be essentially simplified: a reduction in the order of the system of PDEs,
partial decomposition, etc. This problem can be considered as a mapping of a partial differential
operator from R

n in R
n−1.

Deviations of hypersurfaces xs = ±hs from a hypersurface xs = 0 are also assumed to be small.
The change of functions along the hypersurface xs = 0 is characterized by the quantity l. Then
ε0 = 2hs

l ≪ 1. The value 2hs is assumed to be finite positive, 2hs = finite > 0. If the value l is equal
to the wavelength λ, i.e. l=λ, then in the hyperbolic operator this corresponds to the output to the
characteristic defined by the principal part of the operator.
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Restriction on derivatives. We introduce a restriction on the class of differential operators
in contrast to (Selezov, 2000) [9]. The derivative components parallel to the median surface of the
hyperlayer must be even uk,s when s = 2, 4, . . ., which narrows the class of problems under consider-
ation. In the case of odd derivatives uk,n, when k = s, the field can penetrate into the layer and the
decomposition will not be suitable.

Expanding as a decrease in the dimension of the problem. Cauchy and Poisson, when
considering the problem of elastodynamics in dimensional form for a layer, assumed that the thickness
of the layer is small compared with the planar dimension. In the generalization to Euclidean space,
this condition was noted above as the change in the unknown functions along the hypersurface is much
larger than their change along the normal. The expansion of field functions in power series in terms of
the coordinate relative to the median hypersurface leads to a degenerate problem of determining the
coefficients of the series, which now depend only on the coordinates

ui(t, x
2, . . . , xn−1, xn) =

∞∑

k=1

uik(t, x
2, . . . , xs−1, xs, . . . , xn)(xs)k.

Thus, the dimension of the problem is reduced by 1.
In this case, the expansions are valid for any field characterized by smooth (infinitely differentiable

functions), so that there exist convergent expansions. In the formal construction of solutions, one can
construct expansions in power series along the normal to the coordinate line, assuming the desired
functions in the class C∞.

3. Hyperbolic degeneration and the finiteness of the velocity of disturbances propaga-
tion

We consider a special case when the differential equations (1) and the boundary conditions (2) are
represented as the sum of linear and nonlinear parts, where the linear operator L is of higher order p
than the order p1 of the nonlinear operator (Courant & Hilbert, 1962) [11]

ailq(x
1, . . . , xn; ε1, . . . , εν)

∂qul
∂x1(α1) . . . ∂xn(αn)

+F̂i

(

x1, . . . , xn;u1, . . . , uk;
∂ul
∂x1

, . . . ,
∂uk
∂xn

;
∂2ul
∂x1∂x2

, . . . ;
∂p1ul
∂x1(p1)

, . . . ,
∂p1uk
∂xn(p1)

; ε1, . . . , εν

)

= Pi in Ω

i = 1, k, l = 1, k, q = α1 + α2 + . . .+ αn, q = 1, p, p1 = 1, (p − 1), (3)

{

bilq(x
1, . . . , xn; ε1, . . . , εν)

∂qul
∂x1(α1) . . . ∂xn(αn)

+f̂i

(

x1, . . . , xn;u1, . . . ; . . . ,
∂p2uk
∂xn(p2)

; ε1, . . . , εν

)} ∣
∣
∣
∣
xs=±hs

= Q±
j in Ω

j = p · k, q = 1, (p − 1), p2 = 1, (p − 2), l = 1, k. (4)

The system of equations (3), (4) when εr → 0 will be called a degenerate system. If the hyperbolic
system of differential equations (3) remains hyperbolic in parameter degeneracy, then such degeneration
will be called a hyperbolic degeneracy.

It is assumed that the coefficients of the partial derivatives of the operator, which depend on the
parameters ε1, . . . , εν , do not change the signs and do not vanish.

With degeneracy, equations of various types can be obtained. There are three possible cases:
degeneracy to equations of hyperbolic, parabolic or mixed type. The question is — what is correct?
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According to the principle of hyperbolic degeneracy with respect to a small parameter, it is necessary
that the original hyperbolic system degenerate also into a hyperbolic system. For this reason, only the
limiting hyperbolic systems are of interest from the point of view of the finiteness of the velocity of
propagation of perturbations and symmetry (Selezov, 2000) [9].

Differential equations and boundary conditions can be written in the form (Kythe,1996) [12]

Li ≡ ailq
∂qul

∂x1(α1) . . . ∂xn(αn)
+ Fi = Pi at Ω, t > 0, (i, l) = 1, k, q = α1 + α2 + . . . + αn, q = 1, p,

(5)
{

bjlq
∂qul

∂x1(α1) . . . ∂xn(αn)
+ fj

}

xs=±hs

= Q±
j , j = p · k, q = 1, (p − 1), l = 1, k, (6)

where (5) is a system of k equations of the p first order with k unknown functions, which must be
defined as its solutions satisfying the boundary conditions (6) and the initial conditions in the case of
the initial-boundary value problem, so that the correct statement of the problem is guaranteed. The
first term in (5) is the main part of the operator, the second term remains as part of the operator. In (6),
the term fj is an operator of lower order than the first term. It is assumed that the coefficients ailq and
bjlq are constants, but they can depend on a small parameter εr ≪ 1. Unlike equations of the general
form (1), (2), the system of equations (5) can be classified by the type of partial differential equations.
If the system of equations (5) is of hyperbolic type, then in the case of the well-posed Cauchy problem
for (5), (6), solutions exist in the region in the form of weak propagating discontinuities (discontinuities
of derivatives of the highest order in the differential operator). This corresponds to reality in actual
physical media or systems, any perturbation propagates at a finite rate determined by the properties
of the medium or system. The mathematical formulation of the finite-speed principle says that the
solution of the Cauchy problem with completely defined initial data is finite with respect to spatial
derivatives for every fixed value of the time coordinate (Kalashnikov, 1979) [13]. It should be noted that
the main part of the operator is responsible for the solvability of the initial-boundary value problem
for the Cauchy-Kovalevskaya (Misokhata, 1965) [14].

It is necessary to obtain hyperbolic approximations, i.e. to construct a mapping of the original
space R

n(εr) into a degenerate space R
n(εr) → R

n that satisfies the condition of limiting correctness
to be of hyperbolic type; the condition of finite velocity of perturbation propagation [5, 16]. In this
case, new functions û(x) appear in the degenerate space instead of functions u(x).

In what follows we consider the case of coordinate degeneracy ε0 = 2h/l = finite. The expansion
of field functions in power series in a degenerate coordinate s relative to the mid-hypersurface leads
to a degenerate problem of determining the coefficients of series that now depend only on the n − 1
coordinates

ui(t, x
2, . . . , xn−1, xn) =

∞∑

k=1

uik(t, x
2, . . . , xs−1, xs, . . . , xn)(xs)k. (7)

The substitution of (7) into partial differential equations (5) and boundary conditions (6) yields re-
currence relations from equations (5) and the set of systems of differential equations of infinite order
from (6) in. Recurrence relations allow us to express all the coefficients in increasing approximations
in terms of several initial ones.

The next step is the truncation of these infinite systems, which is possible in different ways, while
preserving the terms corresponding to different rules. One can express all of the recurrence relations
in terms uik of a minimal finite number of unknown functions corresponding to the number of systems
of differential equations. Substitution of these functions into truncated equations leads to resolving
equations, which makes it possible to obtain various approximations, i.e. simplified models. The rules
for preserving the terms must be of the form that this system is of the hyperbolic type.

The necessary condition. A necessary condition for the existence of a finite velocity of pertur-
bation propagation in the n-th approximation is the hyperbolicity of the operator of the n-th order.
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To construct the hyperbolic approximation of the n-th order, it is necessary to keep all spatiotem-
poral differential operators up to a given order n in infinite systems. The preservation of all the terms
of the operator up to a certain order gives the main part of the operator of hyperbolic type.

The sufficient condition for the existence of the finiteness of the velocity of perturbation prop-
agation is the correct formulation of the IBV problem (Misokhata, 1965) [14].

For example, the preservation of operators up to the order 4 in an n-dimensional Euclidean space
leads to a hyperbolic approximation corresponding to the Timoshenko equation, but not containing a
correction factor of the thickness-shear type. The keeping of operators up to the 6-th order gives a
new higher approximation — a generalized hyperbolic equation.

4. Generalized hyperbolic equation of propagation of bending waves in elastic layer

Following the foregoing, let us consider the construction of degenerate models for the case R
4. This

is the problem of elastodynamics for a layer. The mathematical formulation of the corresponding
IBV-problem for an elastic isotropic medium in terms of displacements u1, u2, u3 that depend on the
orthogonal coordinates x1, x2, x3 and the time t is represented as follows: find the vector function u

(x1, x2, x3, t) as a solution of the equations in Ω× [0, T ], T > 0

∇2uk + (1 + λ/G)∂k(∇ · u) + Pk = ∂ttuk, k = 1, 2, 3, (8)

satisfying the boundary conditions

σ33
∣
∣
x3=ξ/2 = q+(x1, x2, t) , σ33

∣
∣
x3=−ξ/2 = q−(x1, x2, t) ,

σ3i
∣
∣
x3=ξ/2 = p+i (x1, x2, t) , σ3i

∣
∣
x3=−ξ/2 = p−i (x1, x2, t) , (i = 1, 2) (9)

and the initial conditions
uk |t=0 = 0 , ∂tuk |t=0 = 0 , k = 1, 2, 3. (10)

The components of the displacement vector are represented in the form of power series in x3

ui(x1, x2, x3, t) =
∞∑

ν=0

uiν(x1, x2, t)x
ν
3 , i = 1, 2, 3. (11)

The functions uiν are assumed to be differentiable as many times as required, all the derivatives
uiν are continuous, and the series (11) converge uniformly.

Mass forces Pk are not taken into account in the future. The values are equal ξ = 2h, ∇ ≡
∂

∂x1
e1 +

∂
∂x2

e2 +
∂

∂x3
e3 is the gradient operator, ek, k = 1, 2, 3 is the basis vector; {·} is the symbol of

scalar multiplication. The symbols ∂k and ∂t are the partial derivatives with respect to the coordinate
xk and time t, ∇2 = ∇ ·∇ is the Laplacian. The expression for the components of the stress tensor
has the form

σik = λun,nδik +G (ui,k + uk,i) .

Here δik =











0, i 6= k,
1, i = k

is the Kronecker symbol, G and λ are the Lame constants, expressed in terms

of the Young’s modulus E and Poisson’s ratio ν, G = E/2 (1 + ν), λ = Eν/ (1 + ν) (1− 2ν). The
agreement on summation over repeated indices is meant, and indices after the comma denote the
partial differentiation with respect to the corresponding coordinate.

Dimensionless quantities are introduced using the formulas, taking as the characteristic thickness
2h (m), shear wave velocity cs (m/s), density ρ (kg/m)

u∗k =
1

2h
uk, (x∗1, x

∗
2) =

1

2h
(x1, x2) , t∗ =

cs
2h
t, q∗ =

1

G
q, h∗ =

1

2
, c2s = G/ρ.
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When investigating the propagation of waves, dimensionless variables are introduced l∗ = 1
2h l is the

wavelength, c∗ = c
cs

is the phase velocity. The generalized differential equation with respect to the
transverse coordinate u3 = w0 has the form (the asterisk is omitted)

{[(
∂2

∂t2
+ a1∇2∇2

)

K

− a2
∂2

∂t2
∇2 + a3

∂4

∂t4

]

TM

− b1∇2∇2∇2 + b2
∂2

∂t2
∇2∇2 − b3

∂4

∂t4
∇2 + b4

∂6

∂t6

}

TMC

w0

=

{[

1− d1∇2 + d2
∂2

∂t2

]

TM

+ d3∇2∇2 − d4
∂2

∂t2
∇2 + d5

∂4

∂t4

}

TMC

(
q+ − q−

)
. (12)

In (12) the following notations are accepted: w0(x1, t) is the transverse displacement (deflection), t is
the time, (q1 − q2) is the lateral load, coefficients are equal to

a1 =
1

6(1 − ν)
, a2 =

2− ν

6(1 − ν)
, a3 =

7− 8ν

48(1 − ν)
, b1 =

1

120(1 − ν)
, b2 =

4ν2 − 16ν + 1

480(1 − ν)2
,

b3 =
16ν2 − 37ν + 19

5760(1 − ν)2
, b4 =

64ν2 − 104ν + 41

7680(1 − ν)2
, d1 =

2− ν

8(1 − ν)
, d2 =

1

8
,

d3 =
ν2 − 4ν + 3

384(1 − ν)2
, d4 =

4ν2 − 12ν + 7

768(1 − ν)2
, d5 =

1

384
.

The operator with index K corresponds to the Bernoulli–Euler equation (extended to plates by
Kirchhoff). The operator with the TM index corresponds to the Timoshenko equation (extended to
the plates by Ufland and developed by Mindlin). The Rayleigh equation enters into the operator TM
at a3 = 0. The operator with the TMC index corresponds to the generalized equation (constructed by
Selezov). From the above analytical construction follows as a special case the Timoshenko equation,
but without introducing a correction parameter — the coefficient of shear.

5. Analysis of the solvability of Cauchy–Poisson approximations

After introducing the dimensionless quantities presented above, as well as carrying out cumbersome
and long calculations, the coefficients αik, bmnwere found, which, when introducing dimensionless
quantities dependent only on the Poisson ratio ν. They were subsequently calculated with a Poisson’s
ratio ν = 0.3 characterizing many materials. Their values are equal to a1 = 0.238, a2 = 0.405,
a3 = 0.137, b1 = 0.012, b2 = 0.028, b3 = 0.003, b4 = 0.004.

6 4
0 0.661 0 0.900
1 0.701 1 0.847
2 0.709 2 0.744
3 0.646 3 0.643
4 0.566 4 0.557
5 0.495 5 0.487
6 0.436 6 0.430
7 0.388 7 0.383
8 0.348 8 0.344
9 0.315 9 0.312
10 0.287 10 0.285 l

2h

c

cs

Fig. 1. The solvability of hyperbolic approximations of the 6-th and 4-th orders of the propagation of bending
waves in a beam strip.
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The conditions for the solvability of hyperbolic approximations of the 6-th and 4-th orders are
obtained for the propagation of transverse (bending) waves in a beam strip. The results of the computer
calculations are shown in Fig. 1.

The solvability of the approximations was investigated by substituting in equation (12) a solution
of the traveling wave type exp [i(kx− ωt)], where k = 2π/l, ω = c2π/l.

It is shown that the 6-th order approximation has one real root in the wavelength interval l ∈ [0, 10)
(Fig. 1), and for l > 10 it has one real and two complex-conjugated roots. The above construction
of hyperbolic approximations made it possible to obtain analytical expressions for the coefficients of
the expansions, in contrast to the indefinite correcting coefficient characterizing the thickness shear
entering in the Timoshenko equation.

6. The model of Timoshenko. A new insight

A new look at the refined equations of the Timoshenko type for rods, plates and shells is presented in
accordance with the fundamental studies of Maxwell, Einstein, and Landau on the propagation of per-
turbations with finite velocity. J.Maxwell after fundamental research in the field of electromagnetism
(Maxwell, 1864) [1] first introduced the hyperbolic equation of propagation of waves with finite velocity
in gases (Maxwell, 1867) [2] instead of the parabolic equation describing the perturbation propagation
with infinite velocity.

S. P.Timoshenko (1921) [15] first generalized the parabolic equation for the propagation of flexural
vibrations of a beam to a hyperbolic equation (1921), applying the phenomenological approach, so
that the normal does not remain normal to the middle surface under bending deformations of the
beam, which is not taken into account by the model continuous medium. In the classical models of
Bernoulli-Euler, Kirchhoff (1850) [16], Rayleigh (1889) [17], the normal remains normal. The effects
of Timoshenko appear locally in the presence of sharp inhomogeneities, in wave theory these are short
waves. In this case, it is necessary to apply a more general theory than the classical one, for example,
the theory of Cosserat (1909).

It is impossible to change the type of the differential operator by any correction factor; it is pos-
sible only by selecting this coefficient to approximate the description to the model predicted by the
continuous medium.

Timoshenko’s generalization is analogous to that which occurs in the construction of other hyper-
bolic models, when higher order effects are taken into account that go beyond the framework of classical
traditional theories. For example, the heat propagation model (Cattaneo, 1948) [18], in this case, the
difference from the classical theory was later explained by nonequilibrium thermodynamics (Lykov,
1967) [19], the diffusion model (Davydov, 1935) [21] takes into account the collision of particles in con-
trast to the classical theory. We also note the model of hyperbolic turbulence (Monin 1955) [20], the
equation of Smoluchowski (Davies, 1954) [22], the equation of statistical processes (Fock, 1926) [23],
the sedimentation equation (Selezov, 2014) [24].

Application of the Cosserat theory. In the classical theory of continuous media, it is assumed
that the forces acting collinearly act on an infinitesimal element (Fig. 2).

a

ε

b

Fig. 2. Effects of forces on an infinitesimal element.

In the presence of a moment field, this field
(Fig. 2a), can be regarded as appearing due to the
noncollinear forces (Fig. 2b). Cosserat (1909) [18]
assumed the collinearity of forces and introduced
the moment θ. However, in any case (Fig. 2), this
can be understood as a discontinuity. This is in
accordance with Timoshenko’s equation, when the
normal to the middle surface does not remain nor-
mal after deformation. Thus, the introduction of
moment stresses can be understood as the action
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of noncentral forces, and this is a violation of continuity, and when the beam is bent, the normal does
not remain a normal to the deformed middle surface. This situation is essentially postulated in the
derivation of the Tymoshenko equation: the slope of the tangent to the bending curve ∂w/∂x = ψ+ γ
is represented in the form where ψ the bending deformation, γ shear deformation. At high frequencies
or sharp inhomogeneities this will manifest itself.

We give the equations of the Cosserat theory. Without loss of generality, we can obtain a plane
problem from (8)–(11) by rotating about a vertical axis Ox3. In accordance with the dimensionless
quantities introduced above and supplemented by the Cosserat parameters (the asterisks are further
omitted)

α∗ =
α

(2h)2
, β∗ =

β

(2h)2
, γ∗ =

γ

(2h)2
, ε∗k =

εk
(2h)2

, j∗ =
c2s

(2h)2
j.

The equations for the displacement vector u and the rotation vector θ have the form

V∇2u+ (1 + λ/G)∇(∇ · u)− α∇×∇× u+ 2α∇× θ = ∂ttu,

(β + 2γ)∇ (∇ · θ)− (γ + εk)∇×∇× θ + 2α∇× u− 4αθ = j∂ttθ̈.

Timoshenko’s generalization. From the point of view of the theory of differential operators,
Timoshenko’s generalization is essentially nontrivial, since in this case a parabolic operator of a higher
order (the fourth, not the second) is generalized, in contrast to all previous generalizations (diffusion,
heat, etc.).

For clarity, we give the equations describing the propagation of one-dimensional waves, which
follow from (12) under rotation with respect to the vertical axis normal to the middle surface. The
Bernoulli-Euler equation (1695, 1744), extended to plates by Kirchhoff (1850) [16]

∂2w

∂t2
+
D

ρh

∂4w

∂x4
= 0. (13)

The Rayleigh equation taking into account the inertia of rotation (Rayleigh, 1889) [17]

∂2w

∂t2
+
D

ρh

∂4w

∂x4
−
(
I

h

)
∂4w

∂t2∂x2
= 0. (14)

The Timoshenko equation taking into account the shift (Timoshenko, 1921) [15]

∂2w

∂t2
+
D

ρh

∂4w

∂x4
−
(

D

k2sGh
+
I

h

)
∂4w

∂t2∂x2
+

ρI

k2sGh

∂4w

∂t4
= 0. (15)

Equation (15), including (13) and (14), was presented in a substantial article by S. P.Timoshenko in
1921 (Timoshenko, 1921) [15] and was widly distributed as Timoshenko’s equation.

7. Conclusion

A generalization of the Cauchy–Poisson method for the n-dimensional Euclidean space with restrictions
on differential operators and a small number of degeneracy parameters has been presented. Conditions
for the degeneracy of hyperbolic approximations and the finiteness of the propagation velocity of
perturbations are given. A generalized equation for the propagation of bending waves in a layer has
been obtained as a particular case when n = 4. The Timoshenko equation has been considered as a
non-trivial generalization of a parabolic operator of a higher order than in the previous study. From
our research that generalizes known parabolic models to hyperbolic it follows that the construction of
higher hyperbolic approximations does not improve the accuracy of describing physical phenomena.

Mathematical Modeling and Computing, Vol. 5, No. 1, pp. 88–97 (2018)



96 Selezov I.

[1] Maxwell J. C. A dynamical theory of the electromagnetic field. Cambridge University Press (1864).

[2] Maxwell J. C. On the dynamical theory of gases. Phil. Trans. Roy. Soc. 157, 49–88 (1867).

[3] Einstein A. The meaning of relativity. Princeton University Press (1950).

[4] Weber J. General relativity and gravitational waves. New York, Interscience Publishers (1961).

[5] Selezov I. T., Kryvonos Yu. G. Wave hyperbolic models propagation of perturbations. Kiev, Naukova
Dumka (2015).

[6] Selezov I. T., Kryvonos Yu. G. Modeling medicine propagation in tissue: generalized statement. Cyber-
netics and Systems Analysis. 53 (4), 535–542 (2017).

[7] Cauchy A. L. Sur l’équilibre et le mouvement d’une lame solide. Exercices Math. 3, 245–326 (1828).

[8] Poisson S. D. Mémoire sur l’équilibre et le mouvement des corps élastiques. Mém. Acad. Roy. Sci. 8,
357–570 (1829).

[9] Selezov I. T. Degenerated hyperbolic approximation of the wave theory of elastic plates. Ser. Operator
Theory. Advances and Applications. Differential Operators and Related Topics. Proc. of Mark Krein Int.
Conf., Ukraine, Odessa, 18–22 August 1997. Basel/Switzerland, Birkhauser. Vol. 117, 339–354 (2000).

[10] Dunford N., Schwartz J. T. Linear operators. Part II. Spectral theory. Self adjoint operators in Hilbert
space. New York, London, Interscience Publishers (1963).

[11] CourantR., HilbertD. Methods of mathematical physics. Vol. 1, 2. Interscience, New York-London
(1962).

[12] Kythe P. K. Fundamental solutions for differential operators and applications. Birkhauser Boston (1996).

[13] Kalashnikov A. S. The concept of a finite rate of propagation of a perturbation. Russian Math. Surveys.
34 (2), 235–236 (1979).

[14] Misokhata C. The theory of partial differential equations. University Kioto (1965).

[15] Timoshenko S. P. On the correction for shear of the differential equation for transverse vibrations of
prismatic bar. Philosophical Magazine and Journal of Science. 41 (245), 744–746 (1921).
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Узагальнення та застосування метода Кошi–Пуассона до
еластодинамiки шару та рiвняння Тимошенко

Селезов I.

Iнститут гiдромеханiки НАН України,
вул. Желябова, 8/4, 03057, Київ, Україна

Метод Кошi–Пуассона узагальнено на n-вимiрний евклiдiв простiр так, щоб отримати
диференцiальнi рiвняння в часткових похiдних вищого порядку. Наведено застосуван-
ня до побудови гiперболiчних апроксимацiй, що узагальнюють та доповнюють попе-
реднi дослiдження. В евклiдовому просторi вводять обмеження на похiднi. Розглянуто
гiперболiчне виродження за параметрами та його реалiзацiя у виглядi необхiдних i
достатнiх умов. Як окремий випадок 4-вимiрного евклiдового простору, зберiгаючи
оператори до 6-го порядку, отримано узагальнене гiперболiчне рiвняння поперечних
(згинних) коливань пластин з коефiцiєнтами, залежними тiльки вiд числа Пуассона.
Це рiвняння мiстить як окремi випадки всi вiдомi рiвняння Бернулi–Ейлера, Кiрх-
гофа, Релея, Тимошенкo. Зазначено, що уточнене рiвняння згинних коливань балки,
вперше представлене Тимошенко, потрiбно розглядати як розвиток дослiджень Макс-
велла i Ейнштейна про поширення збурень зi скiнченою швидкiстю в середовищi.
Вперше вiдзначено вiдповiднiсть з теорiєю Коссера.

Ключовi слова: метод Кошi–Пуассона, евклiдiв простiр, диференцiальне рiвнян-
ня в часткових похiдних, еластодинамiка, шар, гiперболiчнi апроксимацiї, рiвняння
Тимошенко.
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