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A generalized spatial mathematical model of the multicomponent pollutant removal for a
liquid treatment is proposed. Under the assumption of domination of convective processes
over diffusive ones, the model considers an inverse influence of the determining factor
(pollution concentration in water and sludge) on the media characteristics (porosity, diffu-
sion) and takes into account the specified additional condition (overridden condition) for
estimation of the unknown mass transfer coefficient of a small value.
The algorithm for solving the corresponding nonlinear singularly perturbed inverse prob-
lem of the type “convection–diffusion–mass transfer” is developed. A computer experiment
has been carried out based on this methodology.
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1. Introduction

In many areas of industry the difficult technological process of filtration is used by means of porous me-
dia. It is taken into account that liquid that is filtered through porous media contains some admixtures.
These admixtures are distinguished by physical and chemical properties and can interact. The threats
of ecocatastrophes are acquiring the special actuality through the insufficient cleaning of technological
liquids in industry, for example, in energy and processing industries. To avoid such risks it is necessary
to develop new methods that assist the intensification of mechanisms of water solution cleaning and
increasing of work efficiency of water-purifying stations, creation of mathematical models of filtration
processes through porous media. Analysis of the results presented in [1–11] indicates about compli-
cated structure of mutual dependence of different factors which determine filtration through porous
media and were not taken into account on conventional (phenomenological) models. The motivation
for constructing the mathematical model of multicomponent pollutant removal for liquid treatment in
spatial filter is the absence of “modeling mechanisms” which consider inverse influence of different kinds
of the process and the media characteristics. The identification of unknown parameters is also of high
priority. In [12,13] a one-dimensional mathematical model of liquid treatment in filtering nozzle is de-
veloped which takes into account inverse influence of the process characteristics (sludge concentration)
on filtering parameters. Some coefficients of the considered process were determined experimentally.
The given work [13] is summarized on the space which corresponds to real filters. The mathematical
model of multicomponent pollutant removal for liquid treatment in spatial filter taking into account
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unknown mass transfer coefficient with small value under assumption of domination of convective pro-
cesses over diffusive ones. Solving appropriate inverse problem gives an opportunity to make calculation
results very close to the experimental ones (compared with conventional, phenomenological models.
It also estimates more exactly the effectiveness of impurity deposition in different technological water
dispersion systems.

2. Statement of the problem

Consider a curvilinear parallelepiped (filter) Gz = ABCDA∗B∗C∗D∗, bounded by smooth orthogonal
and equipotential surfaces between themselves at angular points and edges ABB∗A∗ = {z : f1(x, y, z) =
0}, CDC∗D∗ = {z : f2(x, y, z) = 0}, and also flow surfaces ADD∗A∗ = {z : f3(x, y, z) = 0}, BCC∗B∗ =
{z : f4(x, y, z) = 0}, ABCD = {z : f5(x, y, z) = 0}, A∗B∗C∗D∗ = {z : f6(x, y, z) = 0}.
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Fig. 1. Curvilinear parallelepiped (filter) Gz.

Assume [14] that the pollutants
can transfer from one state to an-
other (processes of adhesion and
avulsion, sorption–desorption). The
pollution concentrations influence the
medium characteristics (porosity, fil-
tration etc.) and are multicomponent
(C = C(x, y, z, t) = (C1, . . . , Cm) =
(C1(x, y, z, t), . . . , Cm(x, y, z, t))), where
Ci is the concentration of i-th impurity
component (i = 1,m) in liquid filter
medium. The corresponding process of
filtration for the domain G = Cz × (0,∞)
is described by the following modeling
problem [9–11,14–17]:





Di∆Ci −
∂ (σ(P )Ci)

∂t
− v ·∇Ci − ε

m∑

l,g=1
l 6=g

kl,gClCg =
∂P

∂t
,

∂P

∂t
=

(
m∑

i=1

βiCi

)
− εα(t)P, i = 1,m,

(1)

Ci
∣∣
ABB∗A∗

= Ci,∗(M, t),
∂Ci
∂n

∣∣∣∣
CDD∗C∗

= 0,
∂Ci
∂n

∣∣∣∣
ADD∗A∗∪BCC∗B∗∪ABCD∪A∗B∗C∗D∗

= 0,

Ci(x, y, z, 0) = C0
i,0(x, y, z), P (x, y, z, 0) = P 0

0 (x, y, z), (2)

v = κ(P )∇ϕ, ∇ · v = 0, (3)

ϕ
∣∣
ABB∗A∗

= ϕ∗, ϕ
∣∣
CDD∗∗

= ϕ∗,

∂ϕ

∂n

∣∣∣∣
ADD∗A∗∪BCC∗B∗∪ABCD∪A∗B∗C∗D∗

= 0, (4)

α(t)

∫∫∫

G
P (x̃, ỹ, z̃, t) dx̃ dỹ dz̃ = µ(t), (5)

where P (x, y, z, t) is the concentration of the sediment in the internal point (x, y, z) of the domain G
(filter medium) at time t; βi are the coefficients which characterize the amount of deposition per time
unit; α(t) is unknown coefficient which expresses the amount of particles avulsed from the granular
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media filter; µ(t) is a function defining mass distribution of the sludge during time (is found experimen-
tally [15]); (5) is overriding condition; σ(P ) is the porosity of medium (σ(P ) = σ0 − εσ∗P (x, y, z, t));
∇ is the Hamiltonian operator; ∆ = ∇ · ∇ is the Laplace operator; Di = d0iε is the coefficient
of diffusion of pollutants into the liquid; σ∗, d0i, ε are solid parameters (characterize the corre-
sponding soft parameter σ(P )), which are determined experimentally, ε is the small parameter (it
expresses advantages of some components of process over others, namely, desorptional components
and phenomenon of component interaction of this process are small in comparison with other com-
ponents); C∗

i (M, t), C0
i,0 (x, y, z) are smooth enough functions coherent between themselves on the

edges of domain G; M is an arbitrary point of corresponding surface; ϕ is the filtration potential
(0 < ϕ∗ 6 ϕ 6 ϕ∗ < ∞); v(vx, vy, vz) is the vector of filtration rate (|v| > v∗ ≫ ε); κ = K(P )
is the coefficient of filtration of corresponding porous medium (K(P ) is the given sufficiently smooth
function; n the external normal to the corresponding surface. Introducing pair of the functions,
ψ = ψ(x, y, z), η = η(x, y, z) (spatially quasi-complex conjugated with the function ϕ(x, y, z)) such that
κ ·gradϕ = gradψ×grad η and substituting the boundary conditions: ψ|ADD∗A∗ = 0, ψ|BCC∗B∗ = Q∗,
η|ABCD = 0, η|A∗D∗C∗B∗ = Q∗, this problem is replaced by more general direct problem of find-
ing spatial analogue of quasiconformal mapping the domain G

z
on the corresponding domain of the

complex quasi-potential Gw = {w = (ϕ,ψ, η) : ϕ∗ 6 ϕ 6 ϕ∗, 0 < ψ < Q∗, 0 < η < Q∗}, where Q∗, Q∗

are unknown parameters, Q∗ · Q∗ = Q =
∫
EFF∗E∗

∂ϕ
∂s ds amount of liquid that passes through some

quasi-potentional surface EFF∗E∗ of domain G
z

(total filtration rate). Assume that this problem on
a spatial conformal mapping Gw 7→ Gz (Gw =

{
w = (ϕ,ψ, η) : ϕ∗ < ϕ < ϕ∗, 0 < ψ < Q∗, 0 < η < Q∗}

is corresponding Gz domain of complex potential) at some average value of κ was determined [8,13], in
particular, dynamic net and the velocity field v are determined, filtration rate is calculated Q = Q∗Q∗.
Then substituting variables x = x(ϕ,ψ, η), y = y(ϕ,ψ, η), z = z(ϕ,ψ, η) in the system (1) and condi-
tions (2), the corresponding problem for the domain G = Cz × (0,∞)) is formulated:





ε d0i

(
v2
∂2ci
∂ϕ2

+ b1
∂2ci
∂ψ2

+ b2
∂2ci
∂η2

+ d1
∂ci
∂ψ

+ d2
∂ci
∂η

)

− ∂ (σ(ρ)ci)

∂t
− v2 ∂ci

∂ϕ
− ε

m∑

l,g=1
l 6=g

kl,gclcg =
∂ρ

∂t
,

∂ρ

∂t
=

m∑

i=1

βici − εα(t)ρ.

(6)

ci(ϕ̄∗, ψ, η, t) = c∗i (ψ, η, t), ci,ϕ(ϕ̄∗, ψ, η, t) = 0,

ci,ψ(ϕ, 0, η, t) = ci,ψ(ϕ,Q∗, η, t) = ci,η(ϕ,ψ, 0, t) = ci,η(ϕ,ψ,Q
∗, t) = 0,

ci(ϕ,ψ, η, 0) = ci,
0
0(ϕ,ψ, η), ρ(ϕ,ψ, η, 0) = ρ00(ϕ,ψ, η), (7)

α(t)

∫∫∫

Gw

ρ(ϕ̃, ψ̃, η̃, t) dϕ̃ dψ̃ dη̃ = µ(t), (8)

where (see, e.g. [15–17])

ci = ci(ϕ,ψ, η, t) = Ci
(
x(ϕ,ψ, η), y(ϕ,ψ, η), z(ϕ, ψ, η), t

)
,

ρ = ρ(ϕ,ψ, η, t) = P
(
x(ϕ,ψ, η), y(ϕ,ψ, η), z(ϕ,ψ, η), t

)
,

b1 = b1(ϕ,ψ, η) = (∇ψ)2, b2 = b2(ϕ,ψ, η) = (∇η)2,

d1 = d1(ϕ,ψ, η) = ∆ψ, d2 = d2(ϕ,ψ, η) = ∆η,

v2(ϕ,ψ, η) = v2x
(
x(ϕ,ψ, η), y(ϕ,ψ, η), z(ϕ, ψ, η)

)
+ v2y

(
x(ϕ,ψ, η), y(ϕ,ψ, η), z(ϕ,ψ, η)

)

+ v2z
(
x(ϕ,ψ, η), y(ϕ,ψ, η), z(ϕ, ψ, η)

)
.
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We used the methods of mathematical physics and hydrodynamics to build mathematical models of
processes of cleaning liquids in which some components dominate the others — numerical-asymptotic
methods; refinement methodology of the known classical models by going to the appropriate “per-
turbed” problems, thus preserving the classic form of laws that describe the processes of fluid flow
in porous media, and the construction of their solutions without starting “first” supplement known
“unperturbed” solution by various amendments.

3. Asymptotic behavior of the solution

The solution of the problem (6), (8) with accuracy O (εn) asymptotic series [15–17]:

ci = ci,0 +

n∑

j=1

ε jci,j +

n∑

j=0

ε jΠi,j +

n∑

j=0

ε jΠ̆i,j +

n+1∑

j=0

ε j/2 Π̃i,j

+
n+1∑

j=0

ε j/2 ˜̃Πi,j +
n+1∑

j=0

ε j/2 Π̂i,j +
n+1∑

j=0

εj/2
ˆ̂
Πi,j +Rc,i, (9)

ρ = ρ0 +

n∑

j=1

ε jρj +

n∑

j=0

ε jP̄j +

n∑

j=0

ε iP̆j +

n+1∑

j=0

ε j/2 P̃j

+

n+1∑

j=0

ε j/2 ˜̃P j +

n+1∑

j=0

ε j/2 P̂j +

n+1∑

j=0

ε j/2
ˆ̂
P j +Rρ, (10)

α(t) = α0(t) +
k∑

j=1

εjαj(t) +Rα(t, ε), (11)

where Rc,i(ϕ,ψ, η, t, ε), Rρ(ϕ,ψ, η, t, ε), Rα(ϕ,ψ, η, t, ε) are remainder members, ci,j(ϕ,ψ, η, t),
ρj(ϕ,ψ, η, t), αj(t) are members of regular part of asymptotics (i = 1,m; j = 0, n); Πi,j(ξ, ψ, η, t),
P̄j(ξ, ψ, η, t) are functions of the boundary type in the vicinity of the point ϕ = ϕ̄∗ (corrections at the

filter outlet) (j = 0, 2), Π̆i,j(ξ̆, ψ, η, t), P̆j(ξ̆, ψ, η, t) in the vicinity of the point φ = ϕ̄∗ (corrections at

the filter intlet) (j = 0, 2), and functions Π̃i,j(ϕ, ψ̃, η, t),
˜̃Πi,j(ϕ,

˜̃
ψ, η, t), Π̂i,j(ϕ,ψ, η̃, t),

ˆ̂
Πi,j(ϕ,ψ, ˜̃η, t)

and P̃j(ϕ, ψ̃, η, t),
˜̃P j(ϕ,

˜̃ψ, η, t), P̂j(ϕ,ψ, ˜̃η, t),
ˆ̂
Pj(ϕ,ψ, ˜̃η, t) (j = 0, 3) in the vicinities of ψ = 0, ψ = Q∗,

η = 0, η = Q∗ (vicinities of side walls of the filter), respectively; ξ = (ϕ∗ − ϕ)/ε, ξ̆ = (ϕ− ϕ∗)/ε,
ψ̃ = ψ/

√
ε, ψ̃ = (Q∗ − ψ)/

√
ε, η̃ = η/

√
ε, ˜̃η = (Q∗ − η)/

√
ε are “stretches” of the corresponding

variables. These functions are intended to take into account the boundary conditions on the side walls
of the filter and allowed to calculate concentration in special zones in the case of a curvilinear form of
the filter.

By the substitution (9)–(11) into (6)–(8) and fulfilling the standard procedure of equating coeffi-
cients at identical degrees ε, the following problems to solve ci,j(ϕ,ψ, η, t), ρj(ϕ,ψ, η, t) (j = 0, n) are
obtained: 




σ0
∂ci,0
∂t

+ v2
∂ci,0
∂ϕ

+
m∑

i=1

βici,0 = 0,
∂ρ0
∂t

=
m∑

i=1

βici,0,

ci,0 (ϕ,ψ, η, 0) = ci
0
,0, ci,0 (ϕ∗, ψ, η, t) = ci∗ (ψ, η, t) ,

ρ0 (ϕ,ψ, η, 0) = ρ00;

α0(t)

∫∫∫

Gw

ρ0(ϕ̃, ψ̃, η̃, t)dϕ̃dψ̃dη̃ = µ(t).
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σ∗ρj−1
∂ci,j
∂t
− v2 ∂ci,j

∂ϕ
−

m∑

l,g=1
l 6=g

kl,gcl,j−1cg,j−1 = Ui,j,

∂ρj
∂t

=

m∑

i=1

βici,j −
j∑

k=1

αj−k(t)ρk−1,

ci,j (ϕ,ψ, η, 0) = 0, ci,j (ϕ∗, ψ, η, t) = 0, ρj (ϕ,ψ, η, 0) = 0;

α0(t)

∫∫∫

Gw

ρ0(ϕ̃, ψ̃, η̃, t) dϕ̃ dψ̃ dη̃ + α1(t)

∫∫∫

Gw

ρj−1(ϕ̃, ψ̃, η̃, t) dϕ̃ dψ̃ dη̃ + . . .+

+ αj(t)

∫∫∫

Gw

ρ0(ϕ̃, ψ̃, η̃, t) dϕ̃ dψ̃ dη̃ = 0.

Solving provides:

ci,0 =





ci,∗ (ψ, η, t− f) exp

[
−βi

∫ ϕ

ϕ∗

dϕ̃
v2(ϕ̃,ψ,η)

]
, t > f,

ci,
0
0

(
f−1 (f − t, ψ, η) , ψ, η

)
exp

[
−βit
σ0

]
, t < f,

ρ0 =

∫ t

0

(
m∑

i=1

βici,0

)
dt̃+ ρ00, α0(t) =

µ(t)∫∫∫
Gw

ρ0(ϕ̃, ψ̃, η̃, t) dϕ̃ dψ̃ dη̃
,

ci,j =





e−λ1
∫ ϕ

ϕ0

Ui,j (s, ψ, η, f(s, ψ, η) − f + t)

v2 (s, ψ, η)
eλ2(s,ψ,η,t) ds, t > f,

− e−λ1

σ∗

∫ t

0

Ui,j
(
f−1(s+ f − t, ψ, η), ψ, η, s

)

ρj−1 (f−1(s+ f − t, ψ, η), ψ, η)
eλ2(ϕ,ψ,η,s) ds, t < f,

ρj =

∫ t

0

(
m∑

i=1

βici,j −
j∑

k=1

αj−k(t)ρk−1

)
dt̃, αj(t) =

∑j
k=1 αj−k(t)

∫∫∫
Gw

ρj(ϕ̃, ψ̃, η̃, t) dϕ̃ dψ̃ dη̃∫∫∫
Gw

ρ0(ϕ̃, ψ̃, η̃, t) dϕ̃ dψ̃ dη̃
,

where
Ui,j(ϕ,ψ, η, t) = d0i

(
v2

∂2ci,j
∂ϕ2 + b1

∂2ci,j
∂ψ2 + b2

∂2ci,j
∂η2

+ d1
∂ci,j
∂ψ + d2

∂ci,j
∂η

)
+ αj−1(t)ρj−1

−∑m
l,g=1
l 6=g

kl,gcl,j−1cg,j−1 −
∑m

i=1 βici,j, (j = 2, n),

λ1(ϕ,ψ, η, t) = −βi
∫ ϕ
ϕ0

ρj−1(s,ψ,η,f(ϕ̃,ψ,η)+t−f)ci,j(s,ψ,η,f(ϕ̃,ψ,η)+t−f)
v2(s,ψ,η)

ds,

λ2(ϕ,ψ, η, t) = −βi
∫ t
0

ρj−1(f−1(s̃+f(ϕ,ψ,η)−t,ψ,η),ψ,η,s̃)ci,j(f−1(s̃+f(ϕ,ψ,η)−t,ψ,η),ψ,η,s̃)
σ(f−1(t̃+f(ϕ,ψ,η)−t,ψ,η),ψ,η)

ds̃,

f(ϕ, ψ̄, η̄) =
∫ ϕ
ϕ0

ds
v2(s,ψ̄,η̄)

is the time transit made by of the corresponding particle from the point

(x(ϕ∗, ψ̄, η̄), y(ϕ∗, ψ̄, η̄), z(ϕ∗, ψ̄, η̄)) ∈ ABB∗A∗ to the point
(
x(ϕ, ψ̄, η̄), y(ϕ, ψ̄, η̄), z(ϕ, ψ̄, η̄)

)
∈ Gz

along the corresponding flow line (as cross section of two surfaces ψ(x, y, z) = ψ̄, 0 6 ψ̄ 6 Q∗,
η(x, y, z) = η̄, 0 6 η̄ 6 Q∗) f−1 is the inverse of a function f with respect to ϕ (it should be noted
that such function exists because v2(φ,ψ, η) is continuously differentiable, limited and positive. Func-
tions Πi,j(ξ, ψ, η, t), P̄j(ξ, ψ, η, t), (i = 0, 1) Π̆i,j(ξ̆, ψ, η, t), P̆j(ξ̆, ψ, η, t), Π̃i,j(ϕ, µ̃, η, t), P̃i,j(ϕ, µ̃, η, t),
˜̃Πi,j(ϕ,

˜̃
ψ, η, t), Π̂i,j(ϕ,ψ, η̃, t),

ˆ̂
Πi,j(ϕ,ψ, ˜̃η, t) and ˜̃P j(ϕ,

˜̃
ψ, η, t), P̂j(ϕ,ψ, η̃, t),

ˆ̂
Pj(ϕ,ψ, ˜̃η, t) are deter-

mined in accordance with [8]. The estimation of remainder members is made in accordance with [14].
Taking 3–4 members of the asymptotic series (9)–(11) is sufficient for receiving approximate solutions
with precision of 4 digits within calculation time of the filtering cycle [18].
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4. Results of numerical calculations

Here are the results of numerical experiment. Here L = 1 m, βi = 0.3 s−1, α0 = 0.0056 s−1, σ0 = 0.5,
ε = 0.001; k = 1; c01,0(ϕ,ψ, η) = 0.02 exp(−ϕ2), c02,0(ϕ,ψ, η) = 0.015 exp(−ϕ2), c∗1(ψ, η, t) = 0.02,

c∗2(ψ, η, t) = 0.015, ρ00(ϕ,ψ, η) = 0. As a result of the interpolation of the experimental data [8] the
distribution of mass of sludge µ(t) in time is obtained (see Fig. 2a). Time dependence of the respective
mass transfer coefficient α(t) is shown in the (see Fig. 2b). The growth of mass transfer coefficient in
time is due to the fact that for the experimentally obtained value µ(t) during the particles sedimentation
the granules of the porous media are saturated with particles and under hydraulic pressure probability
of avulsion of particles from the granules is increased to time τ of the effective filtering.
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Fig. 2. The distribution of mass of sludge µ(t) (a) and mass transfer coefficient α(t) (b) in time.

Fig. 3 shows the results of calculating the concentration of pollution, obtained experimentally and
according to the built model for c1 = 0.02, c2 = 0.015. Analysis of these results suggests the consistency
of experimental and calculated data.

Fig. 3. Results of calculating the concentration of pollution, obtained experimentally and according to the built
model for c1 = 0.02, c2 = 0.015.
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Fig. 4. Distribution of pollution concentration along the filter after 5 hours: (a) — c1 = 0.02; (b) — c2 = 0.015.

Figs. 4–6 show the results of computer simulation of the purification process by different shapes
filters. The obtained results allowed to estimate the efficiency of the purification depending on the
geometric characteristics of the calculated area.
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Fig. 5. Distribution of pollution concentration along the filter after 10 hours: (a) — c1 = 0.02; (b) — c2 = 0.015.
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Fig. 6. Distribution of pollution concentration along the filter after 15 hours: (a) — c1 = 0.02; (b) — c2 = 0.015.

After analyzing the results of computer experiment (see Figs. 4–6), we come to the following con-
clusions: specifying the shape of a filter plays a significant role in the filtration process because it can
lead both to the increase (decrease) of the filtering parameters and to the increase of the productivity
of its work in general.

5. Conclusions

A generalized spatial mathematical model of multicomponent pollutant removal for liquid treatment is
proposed. Under the assumption of domination of convective processes over diffusive ones, the model
considers an inverse influence of determining factor (pollution concentration in liquid and sludge) on
the media characteristics (porosity, diffusion) and takes into account the specified additional condition
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(overridden condition) for estimation of the unknown mass transfer coefficient of a small value. The
solving of the corresponding inverse problem is presented which gives us an opportunity to make
calculation results very close to the experimental ones (compared with conventional, phenomenological
models [8]) and estimate more exactly the effectiveness of impurity deposition in different technological
water dispersion systems. The analysis of the investigations results shows that the filter form plays a
significant role in the filtering because it can lead to an increase (decrease) of filtering parameters and
to the increase the productivity.
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Запропоновано просторове узагальнення математичної моделi очищення рiдини вiд
багатокомпонентного забруднення, яка, за припущення про домiнування конвектив-
них складових цього процесу над дифузiйними, враховує зворотний вплив визначаль-
них факторiв (концентрацiї забруднення рiдини та осаду) на характеристики середо-
вища (коефiцiєнт пористостi, дифузiї), i мiстить спецiально задану додаткову умову
(умову перевизначення) для знаходження невiдомого малого масообмiнного коефi-
цiєнта. Побудовано алгоритм розв’язування вiдповiдної нелiнiйної оберненої сингу-
лярно збуреної задачi типу “конвекцiя–дифузiя–масообмiн”. На цiй основi проведено
комп’ютерний експеримент.

Ключовi слова: багатокомпонентне забруднення, обернена задача, умова пере-
визначення, асимптотичний розв’язок, iдентифiкацiя, просторова модель.
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