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1. Introduction

A glass element in which the residual temperature stresses being formed in the course of its manufacture
(fusing, glass-ceramics joining, etc.) together with the operational stresses can lead to the destruction
of the element, in order to reduce the level of these stresses by means of the relaxation is annealed.
With this, the element is heated from the initial temperature to the given one (which should be lower
than the temperature of the melting of the glass, as in the opposite case there may be more than
deformations of the element). With the intention of lowering the level of the residual stresses by
relaxation, the element is exposed to a given temperature for a certain time, and then is gradually
cooled to a known temperature of the output from the furnace. The duration of the annealing regime
depends on the level of the residual stresses that arose in the product during its manufacturing, as well
as on the level of available temperature stresses for annealing.

When a glass product is annealed, the value of the permissible stresses is set for the heating zone
from the initial temperature to the annealing temperature (maximal at the heating interval) and the
cooling zone from this maximum to the temperature of the furnace output.

The paper deals with the problem of modeling and optimization by stresses of the annealing modes
of glass elements of electric vacuum devices (EVD) in order to reduce the level of residual stresses in
the way of their relaxation. As an element for calculations, the element of a small curvature, which is
modeled by a plate free at the edges (butts) of the constant thickness 2h.

2. Statement of the problem

When constructing an optimization technique of annealing regimes, we assume that annealing is carried
out by means of convective heating by the external environment from the side of one of the bases of
the model element of the plate. In this case, at the bases γ = ±h of the plate, a variable in time
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temperature t+(τ) (control function) is maintained, i.e.

t(γ, τ) = t+(τ) for γ = ±h. (1)

Here t(γ, τ) is the temperature calculated from the initial tp, γ is the thickness coordinate; τ is the
time. Then the temperature in the plate satisfies the initial condition

t(γ, 0) = tp. (2)

The distribution of temperature over the thickness of the plate, under its approximating by a cubic
polynomial, in the case under consideration (for symmetric conditions of plate heating relatively to
the median surface) will have the form [1]:

t(γ, τ) =
a2h2

2

(
γ2

h2
− 1

3

)
dT1
dτ

+ T1. (3)

Here T1 = 1
2h

∫ h
−h t dγ is the temperature averaged over the thickness of the plate, which satisfies the

following equation [1]

a2h2
dT1
dτ

+ 3T1 = 3t+(τ), (4)

obtained for the case of a plate from the corresponding relation (3) taking into account the boundary
conditions (1) for γ = h. It should be mentioned that in literature the nonlinear analysis is often
suggested to be applied to study plate and shell structures under thermal loading. As an illustrative
example, in [2] the non-linear coupled partial differential equations derived in the von Karman sense
and extended to thermal loading with the inclusion of curvature for a skew rectangular panel has been
employed to analyze thermal stresses for movable edge boundary condition.

Taking into account the condition (2) and taking into account (3), we obtain:

T1(0) = tp,
dT1(0)

dτ
= 0. (5)

The temperature stresses in the thermosensitive plate free from the external load are described by
the formulas given in [3], i.e.,

σ1 = σ2 ≡ σ =
E

1− ν (et −Φ), (6)

where E is the modulus of elasticity; Φ(t) is the total pure thermal deformation determined by the

formula Φ(t) =
∫ t
t0
αt(ξ) dξ; αt is the coefficient of linear temperature expansion; et = 1

2h

∫ h
−h Φ(t) dγ;

ν is the Poisson’s ratio.
With this, the components of the elastic deformation of the median surface will be

ε1 = ε2 = et, χ1 = χ2 = 0, (7)

where ε1, ε2 are the components of tensile strain (compression); χ1, χ2 are the deformation changes of
curvature.

In view of the above, the initial problem of optimization by the stress state of the annealing regimes
of the considered glass element is reduced to the construction of the optimal by this state the annealing
regimes the plate free at the edges, on the surfaces γ = ±h of which the temperature t+(τ) is known
at given constraints on its change and on the corresponding temperature stresses σ+ for γ = ±h.

As it is known [4–8], the strength of glass on the surface of the plate is 3− 4 times less than the its
strength inside. The compression resistance is 8− 10 times higher than tensile strength. Therefore, in
determining the optimal by stresses annealing regimes for thin glass plates, we will take into account
the limitations on the magnitude of surface temperature stresses.
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The plate must be heated in a convective manner from the initial temperature tp to the maximal
t0 for the time τ0 on the surface γ = h, then this temperature must be kept for the time τB, and then
the surface must be cooled down to the final temperature t∗ (t∗ 6 t0) for the time t∗ under certain
constraints on the parameters of thermostressed state and the ratio of heating. The control function
is the temperature t+(τ) = t(h, τ) of the outer surface of the plate, which is an unknown function and
satisfies the following conditions (in accordance with the stated purpose of heating):

t+(0) = tp; t+(τ) = t0 for τ0 6 τ 6 τ01; t+(τ∗) = t∗;

VT1 6
dt+(τ)

dτ
6 VT2;

(
dt+(τ)

dτ

)

τ=τ0

= 0;

(
dt+(τ)

dτ

)

τ=τ01

= 0, (8)

reflecting the purpose of heating and the specifics of the heat treatment of glass products [9], as well
as the smoothness of the control function at certain moments of time (the conditions allowing the
practical realization of optimal regimes). In (8), VT1, VT2 are the given permissible heating ratios.

To ensure the strength of the considered plate over the entire heating interval [0, τ∗], we assume
that the parameters of the thermostressed state change within the given boundaries

σ±0 6 σ± 6 σ±∗ , (9)

where σ±0 6 0, σ±∗ > 0, σ±0 , σ±∗ are given values of permissible stresses. From here, the signs “+”, “−”
are used to denote the functions and values on the outer and inner surfaces of the plate, respectively.

In the formulation of optimization problems for a stress-strain state, it is important to choose the
optimality criterion (which must be an energy or other measure of the quantities by which processes
are optimized). For homogeneous shells, as a rule, they choose the appropriate functional, which in an
integral sense reflects the goal of optimization. In particular, in the constructing the optimal modes
of technological heating of the shells there is used a functional of elastic deformation energy [1], which
is the measure of the stress state in the whole domain of the shell for an arbitrary time τ and it is
related to the thermal strength of the glass product at the stages of heating-cooling. In the plates,
the resulting temperature stresses in the process of heat treatment essentially depend on the nature
of the temperature distribution. At the same time, the maximal normal stresses (because of which,
according to the first theory of strength, the glass crackes) arise on the surface of the plate. Therefore,
when optimizing the stress state, it is expedient to use a local optimality criterion, which is a more
precise measure of a stress state. As such a criterion of optimality, we take the functional of maximal
normal stresses

N = max {σ (α1, α2, γ, τ)} , α1, α2, γ ∈ (V0); 0 6 τ 6 τ∗, (10)

where τ∗ is the duration of the heat treatment, V0 is the domain of change of the curvilinear coordinates
in the three-dimensional Euclidean space occupied by the plate.

The problem is formulated for searching a control function f which provides a minimum of the
functional (10) on the set of functions describing the thermostress state of the plate and satisfying
the system of the corresponding correlations of the thermomechanics and the conditions for fixing the
surfaces of the plate.

We will construct a solution of the formulated problem based on the principle of stepwise parametric
optimization, and for the realization of the search phase of the conditional minimum of the functional
(10) we apply the method of local variations [10], which is based on the variations in the space of states
of the control function under a known solution of the direct problem (which describes the thermostress
state of the plate at the given thermal and mechanical boundary conditions for the known values of
the control function).

The method of local variations is based on the known values of varying values, which are the
solution of direct problems. Therefore, when they practically use this method for calculating the
values of values, which should be compared, it is necessary to have the initial (input) value of the
control function at the whole interval of the argument change for the most possible accounting of the
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technological, physical and geometric features of it, for which it is possible to construct solutions of
the direct problems. In this connection, it is relevant to construct such an initial approximation of the
control function (using analytical methods) which would take into account as many as possible of the
mentioned features.

3. Solving the direct problem

For the given law of heating (at the known temperature t+(τ) of the surface), Eq. (4) is solved by the
method of least squares for finite-element approximation of the heating mode according to the method
described in [11, 12]. We introduce the operator notations and present (4) in the form

Au = f, (11)

where u = (T1), f = (t+), A =
(
a2h2

3
d
dτ + 1

)
.

Let us divide the heating interval [0, τ∗] into the p−1 finite element in time with nodes 1, 2, 3, . . . , p.
The unknown functions T1 we present on the interval [0, τ∗] by the functions of the shape and values
of these functions in the nodes. Then, at i-th step we will have the following:

T1(τ) = G1(τ)T i1 +G2(τ)T i+1
1 , (12)

or in the matrix form

T1 = [G1G2]

[
T i1
T i+1
1

]
. (13)

Here τi 6 τ 6 τi+1, T
i
1, T

i+1
1 are the values of the function T1 at the points τi, τi+1, and G1(τ), G2(τ)

are the functions of the shape.
For the function of the shape, we choose a polynomial of the first degree satisfying the following

conditions:
G1(τi) = 1, G1(τi+1) = 0, G2(τi) = 0, G2(τi+1) = 1. (14)

With this:
G1(τ) =

τi+1

τi+1 − τi
− τ

τi+1 − τi
, G2(τ) = − τi

τi+1 − τi
+

τ

τi+1 − τi
. (15)

Let the vector q(i) a set of values of the desired functions in the nodes i-th element, and G̃ is a
matrix, whose elements are the functions of the shape. Then

u(i) = [G1, G2]

[
T i1
T i+1
1

]
= G̃q(i), f (i) = G̃δ, where δ =

(
t+i
t+i+1

)
. (16)

Minimizing the function of the least squares method

Ĩ(i) =

∫ τj+1

τj

(
q(i)TÑTATAÑq(i) − 2q(i)T ÑTATÑδ

)
dτ

For the i-th element for all parameters q(i) we obtain a system of linear algebraic equations with respect
to unknown values of the function T1 in the nodes of the i-th element. Summing by all elements we
obtain a system of linear algebraic equations

[K]{δ} = {S} (17)

with respect to the unknown values of the function T1 in the nodes of splitting the interval 0 6 τ 6 τ∗
with the points τi = i τ∗p into p equal parts. Here:

[K] =
∑

i

Ki, {S} =
∑

i

Si, {δ} =
∑

i

q(i), q(i) =
(
T i1, T

i+1
1

)T
,

the transpose matrix is indicated by the symbol “T”.
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The expressions for the elements of the matrix Ki, Si (for the i-th element) will be written in
expanded form:

K11 =
a4h4

9

1

p
− a2h2

3
+
p

3
, K12 = −a

4h4

9

1

p
+
p

6
, K21 = K12,

K22 =
a4h4

9

1

p
+
a2h2

3
+
p

3
, S1 =

(
−a

2h2

6
+
p

3

)
t+i +

(
−a

2h2

6
+
p

6

)
t+i+1,

S2 =

(
a2h2

6
+
p

6

)
t+i +

(
a2h2

6
+
p

3

)
t+i+1, (18)

where p = τi+1 − τi.
We also note that to achieve the same accuracy of the solution by the method of finite differences,

it is necessary to considerably thicken the division with respect to time (which leads to an increase in
the duration of calculations).

To solve the system (17), we use the Gauss method in Kholeskii modification [11]. For the known

values of averaged temperature T
(i)
1 , using the correlation (3), we calculate the temperature for the time

moment τi and for arbitrary values of the thickness coordinate γ. With this, we use the appropriate
numerical differentiation formulas to calculate the derivatives T1 in time [13–15].

To calculate purely thermal deformation Φ± and its averaged characteristic et, we use the method
described in [12]. At the same time, the dependence of the coefficient of linear thermal expansion on
the temperature will be given by means of piecewise-linear functions in the form

αt(t) =

q∑

p=1

(
b(p)t+ d(p)

)
S+
(
t(p) − t

)
, (19)

where t(p−1) 6 t 6 t(p), S+ is the function of jump, b(p), d(p) are the parameters describing piecewise-
linear dependence.

In this case, the distribution (3) of the temperature in the shell thickness is given in the form

t(γ, τ) = A(τ)γ3 +B(τ)γ2 + C(τ)γ +D(τ),

where

A = 0, B =
a2

2

dT1
dτ

, C = 0, D = T1 −
a2h2

6

dT1
dτ

. (20)

For the known values Φ±, et, we find the values of the stresses on the surface of the plate by the
formula (6).

The algorithm for constructing a solution to an extreme problem consists of two iterative processes:
the variation of the value of the control function t+ ≡ {t+(n)(τi)} at discrete moments at a fixed step δ
and the splitting of this step.

In approximating, the desired control function t+(n−1)(τi) is chosen so that the thermal conditions (8)

and the constraints (9) are fulfilled. In this case, it is necessary to have a solution of the direct problem,
i.e., the values of temperature and stresses at the given conditions of convective heat transfer. The
fulfillment of the constraints (9) is provided by the above-described algorithm by comparing the stress
components determined by the numerical-analytic method from the direct problem with the given
permissible values. To find the following approximation of the control function t(n)(τi), for the three

values t+(n−1)(τi) ± δ(n−1); t
+
(n−1)(τi) of this function; (obtained in the previous approximation) we

calculate the value of the optimality criterion (10) using the solution of the direct problem. The step
δ(n−1) of variation (sufficiently small positive number, constant for the specific n) is taken for n = 2
to be equal to the maximal gradient of the control function in the initial approximation. The desired
function t+(n)(τi) is the one for which the value of the criterion (10) is minimal and the conditions (8),

(9) are satisfied.
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The following approximations of the control function are obtained using the previous algorithm with
the step splitting by the algorithm δ(n) = δ(n−1)/2, n = 2, 3, 4, . . .. The iteration process continues to
fulfill the following condition

{
t+(n+1)(τi)

}
≡
{
t+(n)(τi)

}
, δ(n) 6 ε, (21)

where ε is a given small number, τi = i τ∗N (i = 1, N − 1).
The search for the conditional minimum of the functional (10) is carried out by comparing the

stresses in the domain of change in the thickness coordinate γ with the step ∆γ (∆γ = 0.1h), which
we calculate for the known values of the temperature (found in the previous step) at the same nodes,

For the proposed iteration optimization algorithm, it is important to choose the initial approxima-
tion of the values of the control function, which determines the convergence of the iterative process.
The initial values of the control function are determined on the basis of the solution of the optimization
problem by the stress state of the annealing modes of a free at the edges homogeneous plate on the
surfaces γ = ±h of which the temperature t+(τ) is given with certain constraints on its change and the
corresponding temperature stresses σ+ for γ = ±h, and also with a constant coefficient of temperature
expansion.

Given the symmetry of the problem and the technological conditions, we record the following
constrants on the temperature and temperature stresses on the surface γ = +h:

• the function t+(τ) for 0 6 τ < τ1 is positive and limited by the values of t0. For τ = 0
t+(τ) = tp, and for τ > τ1 − t+(τ) = t1, i.e.:

tp 6 t+(τ) 6 t0, 0 6 τ < τ1; t+(τ) = t1, τ > τ1, (22)

where τ1 is the time of treatment end;
• the function t+(τ) subordinates to the system of functional conditions of the form

∫ τ1

0
τ it+(τ)dτ = Ai, (i = 0, n), (23)

where Ai are the arbitrary constants (which can be used to ensure the smoothness of the desired
modes and the implementation of certain physical constraints, in particular energy one);

• the temperature stresses σ+(h, τ) ≡ σ(γ, τ)|γ=+h on the surface γ = +h change in the given
limits, i.e.:

σ+0 6 σ+ 6 σ+∗ , σ+∗ > 0, σ+0 6 0. (24)

The formulated optimization problem is solved using the methods of the variational calculus on the
basis of minimization of the functional of the plate elastic deformation energy during the heating [1],
which in the case under consideration has the form

M =
2a4h5Eα2

t

45(1 − ν)

∫ τ1

0

(
dT1
dτ

)2

dτ (25)

and it is a functional given on the set of functions T1.
Using the approach [1], the constraints (22), (23), (24) on temperature t+(τ) and temperature

stresses σ+, taking into account the expressions (3), (4), (6) and functions with a limited change
domain [1] can be represented in the form:

a2h2

3

dT1
dτ

+ T1 −
t0
2

(
1 + sinφ+1 (τ)

)
= 0,

∫ τ1

0
τ i
(
1 + sinφ+1 (τ)

)
dτ = Ai, i = 0, n,

a2h2

3

dT1
dτ

+
(1− ν)(σ+∗ − σ+0 )

2Eαt

(
sinφ+11(τ) +

σ+∗ + σ+0
σ+∗ − σ+0

)
= 0, (26)
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where φ+1 and φ+11 are arbitrary functions. Then finding the solution of the formulated optimization
problem is reduced to the determination of the extremals of the functional (25) on the set of functions
T1, φ

+
1 , φ+11 satisfying the conditions (26). The solving of such a problem about a conditional extremum

is reduced to finding the unconditional extremum of the following functional

M∗ =
2hEα2

t

3(1 − ν)

∫ τ1

0

{
a4h4

15

(
dT1
dτ

)2

+λ1(τ)

[
a2h2

3

dT1
dτ

+

(
σ+∗ − σ+0

)
(1− ν)

2Eαt

(
sinφ+11(τ) +

σ+∗ + σ+0
σ+∗ − σ+0

)]

+ λ2(τ)

[
a2h2

3

dT1
dτ

+ T1 −
t0
2

(
1 + sinφ+1 (τ)

)]
+
t0
2

n∑

i=0

λi0τ
i
(
1 + sinφ+1 (τ)

)
}
dτ, (27)

where λ1, λ2, λi0, i = 0, n are the corresponding Lagrange multipliers. From the necessary condition
for the extremum of the functional (27), we obtain the following system of Euler equations:

d2T1
dτ2

+
5

2a2h2

(
dλ1
dτ

+
dλ2
dτ

)
− 15

2a4h4
λ2 = 0, λ1 cosφ+11(τ) = 0,

(
λ2 −

n∑

i=0

λi0τ
i

)
cosφ+1 (τ) = 0.

(28)

From this system of equations and the conditions (26), we find the desired functions T1, φ
+
1 , φ+11, and

the Lagrange multipliers λ1(τ), λ2(τ) and λi0. By means of the already determined (known) mentioned
quantities, we consistently find the temperature t in the plate and the temperature t+ on its surface,
and then by the formula

σ1 = σ2 ≡ σ =
Eαt
1− ν (T1 − t), (29)

we find the stresses in the plate.
We note that the Lagrange multipliers λi0 included in the Euler equations system (28) are used to

satisfy the given constraints at the temperature and stress levels at discrete moments of time [1].

4. The regime under constraints on tensile stresses

Let us consider the case when the constraints are given only on the tensile stresses σ+ on the surface
γ = +h of the plate, and the temperature t+ on this surface at the initial moment of time τ = 0 is
equal to tp. For τ > τ1 (τ1 is the completion time of the annealing process) t+ = t1 and for τ = τ0
(0 < τ0 < τ1), t

+ reaches the maximal value t0, i.e.

t+(0) = tp, t+(τ1) = t1, t+(τ0) = t0, ṫ(τ0) = 0, (30)

where the point above the letter means the derivative by time.
At the time interval τ0÷τ0 1 (the time of exposure), the temperature t+ on the plate surface γ = +h

is constant and equal to t0, i.e.

t+(τ) = t0 for τ0 6 τ 6 τ01. (31)

Tensile thermal stresses σ+ on this surface under such a thermal regime do not exceed the permis-
sible ones, i.e.

σ+ 6 σ+∗ , where σ+∗ > 0. (32)

The values of permissible stresses σ+∗ at all stages of the annealing process are different and are set
as follows.
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At the stage of heating the element from the initial temperature tp to the temperature of exposure
t0, i.e., for 0 6 τ 6 τ0, the permissible level of stress σ+∗ is determined by the formula:

σ+∗ = [σ]− σk, (33)

where [σ] is the allowable value of tensile stresses for glass [5]; σk are the residual stresses in the
element, which were formed during its manufacture (before the annealing process).

At the stage of exposure at a given temperature and cooling to the temperature of the lower
annealing limit of a glass product, we have:

σ+∗ = [σ]− σ∗k(τ). (34)

Here σ∗k(τ) are the residual stresses, the magnitudes of which decrease due to the relaxation from the
value σk to σ∗k(τ01) [5].

For the exposure at the given (maximal) temperature of the annealing mode, the temperature is
equalized in the calculated glass element and as a consequence we have the decrease of the temperature
gradients that occur in it. During the exposure at maximal annealing temperature, the viscosity of the
glass decreases and the relaxation of residual stresses occurs. In the literature [4, 5], it is noted that
the maximal relaxation of stresses occurs when the viscosity of glass is 1013 Pa·s (corresponding to a
certain temperature of annealing) and for some (the duration of which is established experimentally
for the glass types under consideration and the characteristic sizes of the product) time of exposure for
this viscosity. Accordingly, for a particular brand of glass there is a known annealing temperature and
the duration of exposure for it. For example, for a plate of C92 glass with a thickness 2h = 14 mm, it
is established that the maximal annealing temperature is 480−520 ◦C, and the duration of exposure at
this temperature is about 20 minutes [3]) (such thickness has an onboard part of the screens of specific
electric-vacuum devices (EVD)).

At the cooling stage (from the temperature of the lower annealing limit and to the given temperature
of the output from the annealing furnace) the permissible stresses will be:

σ+∗ = [σ]− σ∗k(τ01). (35)

When constructing optimal thermal regimes, as an initial we use the solution of an extreme problem
without taking into account the constraints on the temperature t+ and temperature stresses σ+. In
this case, in the system of Euler equations (28), it is necessary to take λ1 = 0, λ2 =

∑n
i=0 λi0τ

i. Then
this system of equations is reduced to one equation from which we define the function T1. With this

T̈1 +
5

2a2h2

n∑

i=0

λi0τ
i−1

(
i− 3τ

a2h2

)
= 0. (36)

The solutions of Eq. (36) are constructed at each of the time intervals 0 6 τ 6 τ0, τ0 6 τ 6 τ01
and τ01 6 τ 6 τ1 by satisfying the conditions (30), (31) for the temperature t+ with the help of
the representation (3) and verification the restrictions (32) on the temperature stresses σ+. If at
any of the mentioned stage the temperature regime t+ constructed on the basis of the solution of an
extreme problem, causes in the plate at some moment τ02 the temperature stresses σ+ which exceed
the permissible temperatures σ+∗ allowable for t+(τ02) < t0, then from this moment of time (using
expressions (29) and the constraints (26) on the temperature stresses σ+, as well as the system of Euler
equations (28)), we proceed to the restriction regime σ+ = σ+∗ . Having determined the temperature
regime t+ using this principle at all stages of heat treatment and ensuring the condition of its continuity
in time, we obtain an optimal annealing by stresses regime for this element.
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Let us construct the solutions of Eq. (36) at each of the above-mentioned stages. When 0 6 τ 6 τ0,
the solution of this equation at n = 2 is

T1(τ) =
5

2

[
3

2
λ00τ

2 + λ10
τ2

2
(τ − 1) + λ20τ

3

(
τ

4
− 1

3

)]
+ C1τ + C2, (37)

where λ00, λ10, λ20, C1, C2 are some constants determined from the proper of the above-mentioned
conditions:

t+(0) = tp, t+(τ0) = t0,
dt+(τ0)

dτ
= 0, (38)

which for the function T1 have the form:

T1(0) = tp, Ṫ1(0) = 0, T1(τ0) = t0, Ṫ1(τ0) = T̈1(τ0) = 0. (39)

From these initial conditions we obtain: C1 = 0, C2 = tp. Introduce the notations:

µ1 =
λ00
t0
, µ2 =

λ10
t0
, µ3 =

λ20
t0
. (40)

Then the expressions for T1(τ), t+(τ), σ+(τ) at the heating stage 0 6 τ 6 τ0 will be recorded:

T1(τ) =
5

2
t0

[
µ1

3

2
τ2 + µ2

τ2

2
(τ − 1) + µ3τ

3

(
τ

4
− 1

3

)]
+ tp,

t+(τ) =
5

2
t0

[
µ1τ

(
1 +

3

2
τ

)
+ µ2τ

(
τ2

2
− 1

3

)
+ µ3τ

2

(
τ2

4
− 1

3

)]
+ tp,

σ+(τ) = − Eαtt0
3(1− ν)

5

2

[
3µ1τ + µ2τ

(
3

2
τ − 1

)
+ µ3τ

2(τ − 1)

]
. (41)

Since, for τ0 6 τ 6 τ01 we have t+(τ) = t0, then from the equation

a2h2

3

dT1
dτ

+ T1 = t0, (42)

which follows from (4), taking into account the structure of its solution, we find

T1(τ) = C1 exp

(
− 3τ

a2h2

)
+ t0. (43)

From the conditions of continuity of the temperature field for τ = τ0, i.e.:

T1(τ0 − 0) = T1(τ0 + 0), Ṫ1(τ0 − 0) = Ṫ1(τ0 + 0), (44)

we determine C1. With this C1 = 0. Therefore, for τ0 6 τ 6 τ01 we have:

T1(τ) = t0, t+(τ) = t0, σ+(τ) = 0. (45)

The stage τ01 6 τ 6 τ1 is described by Eq. (36). The solution of this equation taking into account
the conjugation conditions for the temperature t(γ, τ) at τ = τ01 under and the thermal conditions at
τ = τ1, will be

T1(τ) = t0

[
ν1

3

2
τ2 + ν2

τ2

2
(τ − 1) + ν3τ

3

(
τ

4
− 1

3

)
+ ν4τ + ν5

]
. (46)
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Constants ν1 ÷ ν5 are determined from the following conditions:

T1(τ01 − 0) = T1(τ01 + 0), Ṫ1(τ01 − 0) = Ṫ1(τ01 + 0),

T̈1(τ01 − 0) = T̈1(τ01 + 0), T1(τ1) = t1, Ṫ1(τ1) = 0.
(47)

By taking into account (3), (29) and (46), we obtain the following expressions for the functions
t+(τ) and σ+(τ):

t+(τ) = t0

[
ν1τ

(
1 +

3

2
τ

)
+ ν2τ

(
τ2

2
− 1

3

)
+ ν3τ

2

(
τ2

4
− 1

3

)
+ ν4

(
τ +

1

3

)
+ ν5

]
,

σ+(τ) = − Eαtt0
3(1− ν)

[
3ν1τ + ν2τ

(
3

2
τ − 1

)
+ ν3τ

2(τ − 1) + ν4

]
. (48)

Now consider the cooling stage τ01 6 τ 6 τ1. Let at some instant τ02(τ02 > τ01), the tensile
temperature stresses σ+ on the surface γ = h reaches the permissible level σ+∗ , and when τ > τ02
they exceed it. With this, the temperature t+ on the surface γ = h of the plate satisfies the condition
t+(τ02) < t0. Here we assume that the tensile stresses σ+ in the time zone 0 6 τ 6 τ01 do not exceed
the permissible σ+∗ . And from the analysis of the Euler equations (28) we obtain:

λ1 = 0, λ2 =
n∑

i=0

λi0τ
i, φ+11(τ) =

π

2
, φ+1 (τ) <

π

2
. (49)

Then, from the third equation (26) for φ+11(τ) = π
2 , we obtain

dT1
dτ

+
3σ+∗ (1− ν)

Eαta2h2
= 0. (50)

From this dependence, we have

T1 =
3σ+∗ (ν − 1)

Eαta2h2
τ +A, (51)

where the constant A, we determine from the condition of continuity of the temperature field at the
time τ = τ02, i.e.:

T1(τ02 − 0) = T1(τ02 + 0), Ṫ1(τ02 − 0) = Ṫ1(τ02 + 0) (52)

Since the second condition (52) is satisfied identically under the condition of equality of stresses
σ+(τ02 − 0) = σ+(τ02 + 0) ≡ σ+∗ at the instant τ = τ02, then the constant A is found from the first
condition (52). Then, using (51) we obtain the following expressions for t+(τ) and σ+(τ):

t+(τ) =
σ+∗ (ν − 1)

Eαt

(
1 +

3τ

a2h2

)
+A, σ+(τ) = σ+∗ , (53)

where

A = t0

[
ν1

3

2
τ202 + ν2

τ202
2

(τ02 − 1) + ν3τ
3
02

(
τ02
4
− 1

3

)
+ ν4τ02 + ν5

]
− 3σ+∗ (ν − 1)

Eαta2h2
τ02.

5. Numerical experiment

The optimal annealing regime t+ and the corresponding temperature stresses σ+ are determined for
the plate of the thickness 2h = 14 mm, made of glass with the following physical and mechanical
characteristics αt = 9.1−9.4 ·10−6 1/degree; λ = 3.9 ·10−3 cal/(сm·s·degree); ρ = 2.26 g/cm3; ν =0.22;
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C = 0.19 cal/(g·degree); E = 6.4 · 105 kg/cm2. Maximal heating temperature (annealing temperature)
t0 = 510 ◦C. The temperature dependence of the coefficient of temperature expansion is shown in
Fig. 1 [16].
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Fig. 1.

In Fig. 2, the changes in time of the opti-
mal annealing regime and the corresponding ther-
mal stresses σ+ for the three values of permissible
stresses σ+∗ on the surface γ = +h of the plate at
τ0 = 29 min and τ01 − τ0 = 10 min are shown. The
dashed curve corresponds to σ+∗ = 2.28 MPa, solid
curve to σ+∗ = 3.05 MPa, dashed dotted curve to
σ+∗ = 3.81 MPa. It is seen that with the decrease of
the value of permissible thermal stress, the duration
of annealing increases significantly. With the points
Ai, i = 1, 3, the moments of time τ = τ02 are indi-
cated at which the stresses σ+ on the surface of the
plate reaches the permissible values σ+∗ . In this case,
the tensile stresses acquire the maximal values at the
beginning of cooling (in the vicinity of the time from
which cooling begins).
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The level of these stresses can be reduced in optimal regimes by introducing preliminary auxiliary
allowable tensile stresses σ+∗∗ ≪ σ+∗ , at which the temperature gradient and the levels of tensile stresses
σ+ are decreasing in the vicinity of the instant of the time from which cooling begins. At the same
time, the cooling process becomes two-stage. At the second stage, the cooling process takes place with
the true permissible tension σ+∗ .

In Fig. 3, the optimal changes of the temperature t+ in time and of the corresponding stresses σ+

on the surface γ = +h of the plate in the two-stage cooling process are illustrated. The duration of
exposure at annealing temperature (τ01−τ0) = 20 min. The proceeding to the maximal temperature is
τ0 = 29 min, and the duration of the heating τ1 = 117 min. The solid curves show the optimal changes
of surface temperature in time and of the stresses corresponding to it on this surface. It is shown
that when heating the plate, from the initial to the annealing temperatures, the temperature stresses
are compressive, and when cooling the plate, they are tensile. According to the above-mentioned, the
cooling regime is constructed with restrictions on two levels of tensile stresses. At first, when cooling to
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the temperature 330 ◦C (under greater of which there are possible structural transformations and the
desired minimal temporal tensile stresses), the limitations on tensile temperature stresses are taken of
the order of σ+∗∗ = 1.7 МPа (small values), then the cooling goes without restrictions until the stresses
on the surface of the plates reach the actual permissible σ+∗ (of greater values, about 4 MPa). Cooling
with these restrictions continues to the final temperature (output of annealing furnace). With this,
the duration of the annealing process increases slightly (see Fig. 2 and Fig. 3). Such a regime at high
temperatures of cooling, practically does not lead to the emergence of additional residual deformations.

6. Conclusions

The performed numerical studies for the C-93 and C-94 glass (used in electrovacuum production) have
shown that the consideration of the thermal sensitivity coefficient of thermal expansion in this case
(for the considered plates and shells) results in refining the results within the accuracy of the shell
theory (about 5%). Therefore, when constructing optimal annealing regimes in engineering practice, it
is expedient to use the analytical solution of the optimization problem, which is based on minimizing
the functional of elastic deformation energy over the time of heating for a direct problem of thermome-
chanics with constant coefficients of thermal expansion (for the values equal to the mean value on the
interval of the temperatures under consideration). Such a solution is used for constructing an initial
approximation of the control function.
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Математична модель оптимiзацiї за напруженим станом режимiв
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Побудовано математичну модель i розв’язано задачу оптимiзацiї режимiв вiдпалу
термочутливих скляних елементiв конструкцiй з використанням числових методiв i
варiацiйного числення. Як приклад побудовано i проаналiзованi оптимальнi режими
вiдпалу конкретних скляних пластин за рiзних значень допустимих напружень.
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