// TexHuueckue Haykm //

// International Scientific Journal / N2 9, 2015

JlirepaTtypa

1. Kponikoscwkuii /1. O. Tengentii konantepcbkoi mpomucioBocti Ykpainu / /[. O. Kponikoscwkuii // EpextuBaa ekoHoMika.

—2003. — Ne 10. — Peskum moctymy: http://www.economy.nayka.com.ua/?op=1&z=3460

2. Kanrepe B. M. Cencopubiii ananms npoayktos nutanus [Teker]: monorpadwust / B. M. Kantepe, B. A. Matucon, M. A. @omen-

k0. — M.: Tunorpapuss PACXH, 2003. — 400 c.

3. Cugopenko O.B. Haykose o6rpyHTyBanis i (opMyBaHHS CHOKUBHUX BJIACTUBOCTEN TIPOAYKTIB 3 NPICHOBOAHOI pubHU Ta

POCTMHHOT CHPOBUHM: JIHC. ... IOKT. TexH. HayK: 05.18.15: saxumiena 04.12.2009 p.: 3ats. 12.05.2010 p. / Cumopenko Osena Bosonu-

mupiBra. — K., 2009. — 327 c.

4. Cenoronosa JI. CeHcopHi BiacTUBOCTI 1yKepok st criopremeniB / JI. Cenoronosa // Toapu i punku. — 2009, — Ne 2. —

C. 115-121.

5. Mapaap M. P. Cencophuii anaiis eKCTpyoBaHuX IIPOAYKTIB 30araueHnx M'siciumu Komronentamu / M. P. Mapuap // Xap-

4yoBa Hayka i rextosiorist. — 2012, — Ne 2 (19). — C. 57-60.

6. OcHOBHbBIE METO/IBI CEHCOPHOI OlleHKH npoayKkToB nutanus / [B. M. Kantepe, B. A. Martucon, M. A. @omenko, I. B. Kpioko-

Ba| // [Iumesas mpom-cth. — 2003. — Ne 10. — C. 6-13.

7. Nocaimxents cencopue. Metomosoris. 3aramphi nactarnosu [Texer]: ICTY ISO 6658:2005. — Yumnwii Big 2006-07-01. —

K.: [lepxcnosxkuscrangapt Ykpainu, 2006. — 17 c. — (Harmionanbhi crangapti Ykpainu).

8. locnimxenus cencopue. Mertonosiorist. PankyBanHs XapuoBUX TPOILYKTIB 32 JIOMOMOTOI0 METO/[iB i3 BUKOPUCTAHHSIM IITKAJ
ta kateropiii [Texcr]: JCTY ISO 4121:2005. — Yunnwuii Bix 2006-07-01. — K., JlepxkcnoxkuBcrangapt Ykpainu, 2006. — 15 ¢. —

(HarmtionasnbHi craniaptut YKpainm).

9. Kekcn. 3arampni texuiani ymosu» [Texct]: JCTY ISO 4505:2005. — Yumawmii Bixg 2006-10-01. — K., /Iep:kcnoxuBcTangapt

Yxpainu, 2006. — 23 c¢. — (Hanionanbhi cranzaptu Ykpainn).

Sutula Alexander
student

YK 004.43

National Technical University of Ukraine “Kiev Polytechnic Institute”

FUNCTIONAL REACTIVE PARADIGM ADVANTAGES
FOR ANDROID DEVELOPMENT

Summary. This article describes conceptual difference between imperative, reactive paradigms and functional reactive style
advantages in Android development. Solutions of imperative paradigm main problems are described.

Key words: Android, functional reactive paradigm

Today mobile applications development involves using
the Java as primary programming language which is
based on imperative paradigm.

Imperative programming is programming paradigm,
where algorithm is described as a sequence of instructions
that change program state. Assigning, which is intensive-
ly used in imperative paradigm, increases the difficulty of
computing models and assumes in vulnerability to errors
accompanied by objects state changes that are extreme-
ly difficult to trace.[1] Also, because of the condtinuous
changing states, with multithreading processing flow, locks,
etc. must be used. In addition, due to probable external

58

states changes in a function, this has to be checked, along
with the usual test of the output values of the function.

Android application should provide fault tolerance at
work in terms of volatility internet connection, limited
device memory, etc. So, in the foreground comes errors
processing, such as lost connections, server unavailability
problem with converting JSON in pojo, incorrect cach-
ing. Imperative paradigm forces creation of additional ob-
jects and error handlers. That leads to code size increase
and thus creates the threat of mistakes. [2]

When requests based on the existing are created, arise
problems associated with the interaction of these two re-

// MexxayHapofHbin HayuHbIi sxypHan // N2 9, 2015

quests and application structure complexity raising by

adding new classes and abstractions that handle bugs.

Alternatively, it is possible to use a combination of re-
active and functional programming paradigms.

Functional programming — paradigm, which consid-
ers the program as calculating mathematical functions
and avoids states and variable data. Functional program-
ming is focused on the using functions, as opposed to
changes in the condition and performance of sequences
of commands.

This approach offers several advantages, including;

— Code reliability improvement. The advantage comput-
ing without conditions — code safety increase by clear
structuring and makes side effects tracking unneces-
sary. Any function works only with local data and per-
forms same way, regardless of where it is called. Data
mutation exclusion eliminates some errors that are
hard to detect (such as random assignment incorrect
value in the global variable in imperative program);

— Parallelism capabilities. Functional programs provide
the greatest possibilities for computations automatic
parallelization. No side effects are guaranteed, so paral-
lel function call for different parameters calculation is
always permissible- calculation order cannot influence
call output;

— Simplicity of unit testing construction. Because the
function in functional programming does not produce
side effects, objects won’t be modified both inside and
outside scope (as opposed to imperative programs
where one function can set any external variable that
will be read by another function). The only effect from
calculation of the function is returned result, which
can be affected only by the outcome — the arguments
value. Therefore, testing every feature can be lead to
calculating it for different arguments sets and there
cannot be affected by functions call order or external
conditions. Function passing unit test guarantee the
quality of the program. [3]

Reactive programming — programming paradigm
based on the concepts of functional programming and ori-
ented data streams and the propagation of change.

Reactive programming has foremost been proposed as
a way to simplify interactive user interfaces, animations,
in real time systems development. It allows entering and
managing parallelism for program optimization. The par-
adigm is based on four principles: fault tolerance, changes
sensitivity, flexibility and scalability.

Most Android application are based on permanent in-
teraction with the user. Implementing reactive approach
and functional programming in the development process
increases application transparency, code readability and
helps avoid errors associated with the program states and
division into streams. [4]

// TexHuueckue Haykm //

The ability to use functional paradigm partially ap-
peared in Java version 8, which currently is not supported
by Dalvik JVM, and therefore can not be used to develop
Android application. [4]

RXJava framework provides functional reactive par-
adigm for application development. It enables creating
asynchronous systems based on processing events. Writ-
ten in Scala and uses its tools. The framework provides
ability develop distributed application services without
the locks, synchronization or multithreading security con-
cepts, applying reactive functional declarative style. And,
key framework feature becomes classes and wrappers set
for convenient Android application development, such as:

1. Sheduler, which plans and oversees the launch and
implementation processes on different flows.

2. Operators to facilitate the Activity and Fragments,
multiple callbacks for tracking their life cycle.

3. Wrappers for all messages and notifications, allow-
ing them to combine all calls.

Unlike classical (imperative) developing, a Java appli-
cation framework RXJava provides compliance with the
four reactive programming basic principles:

1. The fault tolerance principle: all transactions results
are always predictable. Potential problem areas and pos-
sible errors are known, what facilitate processing them.

2. The sensitivity principle: the database or server
connection is protected from failure due to timeout, in
case of problem request will be repeated several times and
then will return result of caching.

3. The event orientation principle: during the request
execution and processing results, the program always re-
sponds to events: inquiry successful / unsuccessful com-
pletion, handling outcome end. In addition, there is the
option to subscribe several methods on one Observable
and keep a consistent state of the whole system.

4. The scalability principle: adding new functionality
does not require previous code changes. Convenient login
errors, saving stacktrace, filter results, and so on is pro-
vided.

RXJava framework used for projects written in Java,
with Scala abstraction and classes, extends Java, by add-
ing additional features of functional languages, but also
leads to code size and complexity increasing. Combining
RXJava framework and Java language does not provide
full functional paradigm support. For aforementioned
problems avoidance usage Scala language with this frame-
work is suggested. [4]

Scala — multiparadigm programming language com-
bining the properties of object-oriented and functional
paradigms. Scala provides all Java features and adds mod-
ern abstraction such as trait, implicit, type-checked null,
block, pattern matching, monads. Since version 2.11 Sca-
la needs at least Java 6 version. It’s suitable for conversion

59

// TexHuueckue Haykm //

into acceptable Dalvik bytecode. Therefore, pure Scala

cannot be used in Android projects.

Scala provides ability to build strictly typed model
(Domain Speccific Language — DSL) to adapt to each
subject area and express it into language structures. Mac-
roid is Scala DSL for developing Android applications.

Macroid DSL solved number of structural Android
classical architecture interfaces problems:

— Excess files in the project — arising while each layout
being stored in a separate file;

— Lack namespace arising because of layouts storage fea-
tures in a single directory;

— Models duplication for different screen sizes adapting.

Macroid solves XML markup problem by describ-
ing the layout with Scala code that eliminates modular-
ity and division into separate files. Media queries solve
breakdown interfaces problem for different screen sizes,
devices configurations.

Macroid also adds new abstractions such as: Tweak,
media queries, Actions, Snails, which provides:

— High-level abstraction. Extraction common parts due
to Tweak and standard widgets;

— Safe Context use. Owing to the AppContext and Ac-
tivityContext separation, which are received and
shipped separately. AppContext storage in Macroid re-
mains unchanged, and ActivityContext will be stored

// International Scientific Journal / N2 9, 2015

in WeakReference. This solves the problem of memory

leaks.

— Threadsafety. Using Macroid Ul action wrappers to
work with the interface. UI action declares actions
combination and method calls sequence for each
stream separately.

— Creating complex animations. Animation management
using abstraction Snails.

Conclusion: the basic advantages of functional reac-
tive paradigm for Android projects, in comparison to the
imperative paradigm, were reviewed. Solutions impera-
tive paradigm main problems have been considered. Main
tools for implementation functional paradigm namely:
RX]Java framework, Scala were investigated. Framework
RX]Java in Android projects can be used with Java, and
with Scala. Combining Scala and RXJava solves the prob-
lem of excess abstractions and classes, provides the ability
to use previously unavailable tools, such as DSL, which
significantly increases the effectiveness of the program, as
well as the reliability of code, eliminates some fundamen-
tal problems of Android development. This implemen-
tation allows succinctly process exceptional situations
arising in unstable conditions device usage and build a
scalable structure of application-oriented events. Func-
tional reactive paradigm enable developing flexible and
failsafe user interfaces for Android applications.

References

1. An introduction to functional programming through lambda calculus / Greg Michaelson — New York: Dover Publications,

Inc., 2015. — 309 p.

2. Android Programming: The Big Nerd Ranch Guide (2nd Edition) / Bill Phillips, Chris Stewart, Brian Hardy, Kristin Marsi-

cano — Atlanta: Big Nerd Ranch, 2015. — 600 p.

3. Couchbase Server 3.0/3.1 Developer Guide & Older SDKs [Electronic resource]. — http://docs.couchbase.com/developer/

java-2.0/observables.html

4. Macroid Documentation [Electronic resource]. — http://macroid.github.io

60

