УДК 621.865.8

Поезжаева Елена Вячеславовна

кандидат технических наук, профессор,

кафедра механики композиционных материалов и конструкции, аэрокосмический факультет, Пермский национальный исследовательский политехнический университет, г. Пермь;

Закиров Евгений Аликович

студент, кафедра автомобили и технологические машины, автодорожный факультет, Пермский национальный исследовательский политехнический университет, г. Пермь;

Малёв Максим Валерьевич

студент, кафедра автомобили и технологические машины, автодорожный факультет, Пермский национальный исследовательский политехнический университет, г. Пермь.

Poyezzhayeva Elena Vyacheslavovna

Candidate of Technical Sciences, professor,

department of mechanics of composite materials and design, space faculty,

Perm national research polytechnical university, Perm;

Zakirov Evgeny Alikovich

student, department cars and technological machines, road faculty,

Perm national research polytechnical university, Perm;

Malyov Maxim Valeryevich

student, department cars and technological machines, road faculty, Perm national research polytechnical university, Perm.

КАПСУЛЬНЫЙ РОБОТ ДЛЯ ИСПОЛЬЗОВАНИЯ В ГАСТРОЭНТЕРОЛОГИИ CAPSULAR ROBOT FOR USE IN GASTROENTEROLOGY

Аннотация. В настоящее время всё больше людей страдают желудочно–кишечными заболеваниями. В медицинской практике используются устаревшие методы диагностирования, при которых возможно повреждение внутренних органов. Современная медицинская робототехника может решить этот вопрос, так как разработан безопасный капсульный робот для гастроэнтерологии.

Ключевые слова: Робот, исследования, роботизированная операция, силомоментный датчик.

Abstract: At present, more and more people suffer from gastro-intestinal diseases. outdated methods of diagnosing are used in medical practice, that may damage internal organs. Modern medical robotics could address this issue, as developed a secure capsule robot gastroenterology.

Keywords: Robot, research, robotic surgery, force-torque sensor.

Для проведения исследования желудочно-кишечного тракта в современной медицине используется фиброэзофагогастроскопия. Данный метод имеет ряд недостатков:

- Возможность повреждения желудка и пищевода;
- Невозможность забора тканей для проведения биопсии;
- Невозможность тщательного изучения места, которое заинтересовало врача.

Мы предлагаем робота который сможет провести более качественную диагностику, поставить диагноз, взять необходимый материал на проведения медицинского анализа, а также производить микрооперации.

Робот состоит из отдельных капсул, которые нужно проглотить. После того как все капсулы будут проглочены, робот начнет собираться в единое целое в соответствии с запланированной конфигурацией. Присоединение капсул происходит за счет магнитной связи между модулями системы. Собравшись в одно целое, робот начинает проводить диагностику. Для диагностических целей потребуется всего 8 капсул. Если же пациенту понадобиться операция, ему предстоит выпить литр или полтора литра воды и проглотить 15 роботизированных капсул. На рисунке № 1 представлена система сборки и разборки робота.

Рисунок № 1. Система сборки и разборки капсульного робота

Капсульный робот управляется дистанционно оператором. Оператор может моментально отключить одну из капсул, если она перестанет работать или в ней отпадет необходимость. Данные манипуляции с капсулами можно производить в любой момент, даже тогда, когда идет микрооперация.

После того, как все процедуры закончены, робот может собраться в змеевидную систему и пройти через пилорический сфинктер в кишечник, либо может полностью разобраться до отдельных капсул, которые естественным путем проходят через желудочно-кишечный тракт.

Манипулятор работает по принципу силового очувствления. На рисунке № 2 изображена схема работы силомоментного датчика. Упругий элемент размещенный между ведомыми и ведущими звеньями, передает действующие усилия от привода, а также делает измерения величины со стороны внешних сил, которые воздействуют на ведомое звено. Величину прогиба упругого элемента определяется тензометром. Данный метод определения сил и моментов самый простой и надежный. Поэтому применение такого метода является наиболее наилучшим для нашего робота.

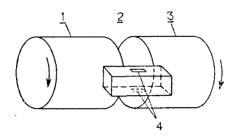


Рисунок 2. Схема работы силомоментного датчика 1- ведущее звено; 2- упругий элемент; 3- ведомое звено; 4- тензометр.

Данный датчик будет располагаться в шарнирах. При определении величины воздействия внешних усилий показания силомоментных датчиков в шарнирах во многом зависят от конфигурации звеньев манипулятора. Рассмотрим влияние веса звеньев по формуле:

$$\begin{split} &T_{\mathbf{1}} = \left(i \cdot \lambda_{\mathbf{1}} \cdot l_{\mathbf{1}} \cdot z_{\mathbf{1}}\right) + \left\{i \cdot \left(l_{\mathbf{1}} + \lambda_{2} \cdot l_{2}\right) \cdot z_{2}\right\} + \left\{i \cdot \left(P_{w} + \lambda_{3} \cdot l_{3}\right) \cdot z_{3}\right\} = \\ &= i \cdot \left(P_{E} \cdot z_{\alpha} \cdot P_{w} \cdot z_{\beta} + P_{H} \cdot z_{\gamma}\right), \end{split}$$

гле

$$\begin{split} z_{\alpha} &= \lambda_{1} \cdot z_{1} + \left(1 - \lambda_{2}\right) \cdot z_{2}; \ z_{\beta} &= \lambda_{2} \cdot z_{2} + \left(1 - \lambda_{3}\right) \cdot z_{3}; \\ z_{\gamma} &= \alpha_{3} \cdot z_{3}; z_{1} = \left(0, 0, m_{1} \cdot g\right)^{T}; \ z_{2} = \left(0, 0, -m_{2} \cdot g\right)^{T}; \\ z_{3} &= \left(0, 0, -m_{3} \cdot g\right)^{T}; \end{split}$$

S — плечевой сустав; E — локтевой сустав; W — запястье; H — позиция точки, связанной с захватом; $l_1 = S \cdot E$; $l_2 = E \cdot W$; $l_3 = W \cdot H$; z_1, z_2, z_3 — векторы силы тяжести (плечевое, локтевое звено, захватное устройство); $\lambda_1, \lambda_2, \lambda_3$ — расстояния от начала соответствующего звена до его центра тяжести; i, j, k — единичные векторы неподвижной системы координат; P_E, P_W, P_H — векторы позиций (сустава, запястья, захвата); m_1, m_2, m_3 — масса (плечевого, локтевого звеньев и захвата).

Данный робот необходим для современной медицины, так как он проводит диагностику желудочно-кишечного тракта без боли и осложнений, проводит микрооперации, может поставить точный диагноз, предотвратив дальнейшее развитие болезни. Уравнения представленные в данной статье являются идеализированной моделью манипулятора.

Список литературы

- 1. Поезжаева Е.В. Промышленные роботы: учебное пособие в 3 ч. М.; УМО АМ МВТУ им. Баумана; изд-во ПГТУ, 2009.
 - 2. А.И. Корендясев, Б.Л. Саламандра, Л.И. Тывес. Теоретические основы робототехники; Книга 1; изд-во Наука, 2006.
 - 3. http://kronportal.ru/forum/content.php/32-robots-in-medicine.