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NMOPIBHAJIbHE JOCMI)KEHHA AEAKUX METAEBPUCTUYHUX AITOPUTMIB
AN PO3B’A3AHHA 3AJAUI KOMIBOSIYKEPA

CPABHUTEJIbHOE NCCIEAOBAHUE HEKOTOPBIX META3BPUCTUYECKUX
AJITOPUTMOB A1 PEILEHUA 3AAAYU KOMMMUBOSAXKEPA

A COMPARATIVE STUDY OF SOME METAHEURISTIC ALGORITHMS
FOR SOLVING TRAVELLING SALESMAN PROBLEM

AHoTauif. [locnigxeHo 3aCTOCYBAHHS TPbOX METAEBPUCTUYHMX AIROPUTMIB §/1s1 PO3B'A3AHHS 3agayi KOMiBOsXXepa: imMiTa-
uii Bignany, Taby nowyky Ta MypalumHoi KOMOHii. [IpoBegeHO eKCnepuMeHTaNbHI qOCigxKeHHs POgYKTMBHOCTI MPO2PAMHOI
peanisaii an20pUTMIB Ha HYOTUPLOX TECTOBMX 3Agayax KOMIBOSXXepd 3 BIGOMUMM ONTUMAIbHUMMU MAPLUPYTAMW. B pe3y/ibTaTi
eKCrepuMeHTY OLjiHeHi XapaKTepUCTUKM PO3B'A3KIB, OTPUMAHUX KOXXHUM a120pMTMOM B Cepii BUMIpIB 30 0gHAKOBY (ikCcoBAHY
KiNbKiCTb Yacy. [letanbHo onmMcaHo 3aCTOCOBAHI B eKCepUMEHTI TapameTpyu an20puTMiB | 0cobmBOCTi peanisavii. Bizyanizosa-
HO MpOLeC ONTUMI3ALIii KOXXHUM i3 an2opuTMmiB. 3p06eHO BUCHOBKM LLI0GO e(peKTUBHOCTI OCTIGIKeHNX an20pUTMIB gsl Pi3HUX
PO3MIpiB 3agay, BUKOPUCTAHMX Y eKCriepuMeHTi.

AHHOTAUMUA. I/IccnegosaHo NpuMeHeHne Tpex MeTasBpucTn4ecKknx aicopuTtMoB g/Aa pelleHns 3agaqyn KOMMUBOsHKepa:
nmunuTaynn omxnea, TCl6y noncka un MprIBbI/IHOI;I KOJ/IOHNN. npOBegeHbl SKCneprumMeHTaibHble NcCiegoBaHns rnpon3BogunTeib-
HOCTHn HPOEPCIMI\/IHOI/VI peaan3aumnn aacopmuTMoB HA YeTbipex TeCToBbIX 3agavyax KOMMNBOS)Kepa C N3BECTHbIMU ONTUMAJIbHbIMW
mapuwpytamm. B pe3y/ibTarte 3KCnepnumMeHTa OLeHeHbl XapakTepncTnku ,DeLLleHI/II/VI, HGﬁgeHHbIX K@XXgbIM 13 a/120pUTMOB B Cepuin
M3M€p€HI/M 30 0gnHaAKoBoe ¢MKCMPOBGHHO€ KO/IN4eCcTBO BpemMeHM. JletanbHO ONuCaHb!l UCro/b30BAHHbIE B IKCrepnmeHTe ra-
pameTpbl a71c0PpUTMOB 1 0cobeHHOCTH peammsaunn. BI/I3yG/'II/I3I/IPOBGH npouecc onTMmMn3aumnn KaxxgbiM 13 ajicopuTMmoB. Cgeﬂa—
Hbl BbIBOgbl 06 3¢¢€KTVIBHOCTVI MCcC/iegoOBAHHbIX a/120PUTMOB g/151 PA3HbIX pA3MepoB 3agad, MCroJ/Ib30BAHHbIX B IKCNIEPUMEHTE.

Summary. Application of the following three metaheuristic algorithms to Travelling Salesman Problem (TSP) were explored:
Simulated Annealing (SA), Tabu Search (TS), and Ant Colony System (ACS). The performance of software implementation of
these approaches was experimentally studied using four test instances of TSP with known optimal solutions. As a result of the
experiment, features of solutions found in a set of trials by each algorithm in the same fixed amount of time were assessed. The
implementation details of the algorithms and the parameters used for the experiment were thoroughly described. Optimization
process was visualized for every algorithm. Conclusions were made regarding the effectiveness of studied algorithms for the
different sizes of problem instances used in the experiment.
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KntoyoBi croBa: 3agaya KomiBoshkepd, MeTaeBpUCTUYHI a120pUTMM ONTUMI3ALIT, an20puTM IMITauil Bignany, an2oputm

Taby noLyKy, anzopuTM MypaLMHOI KOOHI.

KnaroueBble cioBa: 30gadya KOMMnBOSXKepa, MeTasBpncTmndeckme aicoputmbl ONTUMU3ALNN, /12OPUTM UMUTALNN OTXKKMed,

anzopuUT™ Taby NOMCKA, aA20PUTM MYPABbUHOM KONOHUN.

Key words: travelling salesman problem, metaheuristic optimization algorithms, simulated annealing algorithm, tabu search

algorithm, ant colony system algorithm.

INTRODUCTION

Travelling Salesman Problem (TSP) [1] has many ap-

plications in different fields. In its classical formula-
tion, this problem appears in logistics, planning, and mi-
crochip manufacturing. Also this NP-hard [2] problem is
a very popular testbed for various combinatorial optimi-
zation algorithms. The high computational complexity of
seeking an optimal tour in TSP has facilitated the devel-
opment of many heuristic and metaheuristic algorithms.
Such algorithms are widely used because they can find a
solution that is very close to the optimal solution, even
for problems with very large numbers of cities [3].

The purpose of this paper is to explore the applica-
tion of the following three metaheuristic algorithms to the
Travelling Salesman Problem (TSP): Simulated Annealing
(SA), Tabu Search (TS) and Ant Colony System (ACS).
Another objective is to experimentally determine the algo-
rithm that is able to produce the best solution when given
some constant amount of computational resources.

PROBLEM FORMULATION
TSP is the problem of finding the shortest closed tour
through a given set of cities, when distances between
them are known, in such a way that each city is visited
exactly once and the tour ends at the start city. In other
words, the task is to find a Hamiltonian cycle with the
least weight, given a complete weighted graph.

SIMULATED ANNEALING ALGORITHM

Description. Simulated Annealing algorithm [4], [5]
consists of the following steps:

1. Start with a random tour through the given set of
cities.

2. Create a neighbour solution.

3. If the candidate tour is shorter than the current
tour, accept it. Otherwise, still accept it, according to
some probability.

4. Go back to Step 2 and repeat until the stopping cri-
teria are met, lowering the temperature at each iteration
according to some cooling schedule.

This algorithm is inspired by annealing in metallurgy.
Annealing is the process of heating and controlled cooling
of a system.

The key to this algorithm is in Step 3. The higher the
system temperature, greater is the probability of accept-
ing the worse candidate tour. This probability decreases as
the system cools down. The point of accepting the longer
tour is to try to avoid getting stuck in a local minimum.

Pseudocode:

Input: numberOfCities, time,,, T,

Output: S, .,

Scurrent = CcreateRandomTour (numberOfCities)
Spest = Scurrent
timectare = currentTime()
i=0;
while currentTime() - time,.,,. < time,,,
S; = generateNeighborSolution (Scurrent)
Teurren . = calculateTemperature (i, To)

if cost(S;) <= cost(S.y,ien:)

if cost(S;) <= cost(Sy..)

Spest = Si
end
else if exp ((coSt (Scurrent) — COSt(S:)) / Teurrenr) > rand(0, 1)
Scurrent = Si

end
++1
end

return Sp..:

Parameters: Initial temperature (7)) and cooling
schedule.

Implementation details. The following cooling sched-
ule is used:

T =T,a"

Neighbour solution is created using the Stochastic
2-opt algorithm [6], which picks two random indices c,
and c, in such a way that ¢, > ¢, and ¢, — ¢, > 1, and then
reverses the city order in the tour in [c; ¢,] interval.

TABU SEARCH ALGORITHM

Description. This algorithm [7]—[9] can be described
as a sequence of the following steps:

1. Generate a random tour.

2. Create a set of candidate tours that do not have any
of the features on the tabu list.

3. Pick the shortest tour.

4. Add features of a chosen tour to tabu list. Trim
the list so that it will contain no more than the specified
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number of entries. Go back to Step 2, and repeat until the
stopping criteria are met.

The key to this approach is to prevent the search
procedure from repeatedly checking the same areas of a
search space.

Pseudocode:

Input: numberOfCities, time,,, tabulListSize,, (N;), numberOfCandidates (N.)

Output: S,...

Scurrent = CcreateRandomTour (numberOfCities)
Spest = Scurrent
tabulList = createEmptyList (tabuListSizen.x)
timescare = currentTime()
while currentTime() - time,.,, < time,.,
candidateList = []
for 7 = 1 to numberOfCandidates
candidate = generateNeighborSolution (Sarrent, tabulist);
candidateList.add(candidate)
end
bestCandidate = findBestCandidate (candidateList)
if cost (bestCandidate) < cost (Scucren )

Scurren + = bestCandidate

if cost(bestCandidate) < cost (Spes:)
Spest = bestCandidate

end

tabulist.add (features (bestCandidate))

while size(tabulist) > tabulistSizem.
removeLastEntry (tabulist)

end

end

return Spes:

Parameters. Maximum size of tabu list (N,) and the
number of candidates generated in Step 2 (N,.).

Implementation details. Candidate tours in Step 2
are generated using Stochastic 2-opt algorithm, as before.

Tabu features are the edges between the cities 7 and j.
On Step 4, edges (from the tour which is modified by Sto-
chastic 2-opt procedure) between cities ¢, — 1 and ¢,, and
between ¢, — 1 and ¢, are added to the tabu list.

ANT COLONY SYSTEM ALGORITHM

Description. This algorithm [10], [11] is initialised in
the same way as before. Then the following actions are
performed during each iteration:

1. For each ant:

1.1. Perform a stepwise construction of a candidate
tour.

1.2. Update the pheromone trail of the candidate tour.

1.3. Compare the length of the candidate tour with the
best solution. Update the best solution if a shorter tour is
found.

2. Update the pheromone trail of the best tour.

The key to this algorithm is to exploit both history
(information about explored tours) and heuristic informa-
tion (coefficient inversely proportional to edge length).

Pseudocode:
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Input: numberOfCities, time,,,, numberOfAnts (N,), decayFactor (p),
heuristicCoef (B), historyCoef (a), localCoef (o), greedinessFactor (q)

Output: Spest

Spest = createRandomTour (numberOfCities)
initialPheromone = 1.0 / (numberOfCities * cost(S,..))
pheromone = initialisePheromoneMatrix (initialPheromone)
time,.,,. = currentTime()
while currentTime () - timescare < timena

for i = 1 to numberOfAnts

candidate = constructStepwise (pheromone, numberOfCities,

historyCoef, heuristicCoef, greedinessFactor)
if cost(candidate) < cost(Sp..)
Spesr = candidate

end
localUpdatePheromone (pheromone, candidate, localCoef,
initialPheromone)

end

globalUpdatePheromone (pheromone, S,..., decayFactor)

end

return S, ...

Parameters:

Number of ants (N)

History coefficient (o)

Heuristic coefficient (B)

Local pheromone coefficient (o)

Decay factor (p)

Greediness factor (g,)

Implementation details. The greediness factor deter-
mines when to use the probabilistic Roulette Wheel Selec-
tion method and when to greedily choose the tour with
highest T, ?f.lf ; value (1,  represents the pheromone for

1
the edge (i, j); ; ; = =—=, where d(i, j) is the dist

e edge (7,7); 13, ti{a',j]’w ere d(i, j) is the distance
between cities i and j). When Roulette Wheel Selection is
used, the probability of picking a candidate is proportion-

ate to
p.. Tf}' X ”fj
= c & g
r=1 T 2 Mix
where ¢ is the number of cities.
A local pheromone trail update (for each ant) is per-
formed according to the following expression:
T, —(-a)x1, ;40 xri'f}-,
where T is the initial pheromone value.
At the end of each iteration, pheromone trail is updat-
ed and decayed according to the best solution found so

far, as follows:

1
T, —A-p)xty; +pxm,
where C(S) is the length of the best tour.

EXPERIMENT
The performances of the described algorithms were
compared using four TSP instances with the known opti-
mal solutions from TSPLIB, accessible at http://comopt.
ifi.uni-heidelberg.de/software/TSPLIB95/. On the spe-
cific problem instance, each algorithm was run for the
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same fixed amount of time. 50 trials were performed for
each problem and algorithm.
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Results are presented in Table 1.

Table 1
Experiment results
TSP instance
eil51 eil101 kroB150 kroA200
optimal tour length 426 629 26130 29368
number of cities 51 101 150 200
time limit, s 1 5 10 15
. 444,26 674,38 27976,58 32094,96
= 8 (+4,29%) (+7,21%) (+7,07%) (+9,29%)
0
= i 430 650 26972 30381
U (+0,94%) (+3,34%) (+3,22%) (+3,45%)
<18 o 463 704 29409 33722
(+8,69%) (+11,92%) (+12,55%) (+14,83%)
average number of 89475,26 268549,18 352318,3 408675,26
iterations
. 457,02 694,64 29667,76 35990,9
= & (+7,28%) (+10,44%) (+13,54%) (+22,55%)
o0
g = . 439 671 28201 33969
= — min
el s (+3,05%) (+6,68%) (+7,93%) (+15,67%)
& 8 . 492 730 31209 37618
< (+15,49%) (+16,06%) (+19,44%) (+28,09%)
average number of 267,06 707,94 949,28 1062,8
1terations
. 450,12 698,5 29486,66 34428,7
= 8 (+5,66%) (+11,05%) (+12,85%) (+17,23%)
o0
= i 430 675 27627 31807
% e (+0,94%) (+7,31%) (+5,73%) (+8,3%)
< | 8 ax 470 732 31136 37812
(+10,33%) (+16,38%) (+19,16%) (+28,75%)
average number of 46,2 28,22 32,78 40,56
iterations ’ ’ ’ !

Parameters used by each algorithm for the certain
problem are given in Table 2.

Table 2
Parameters of the algorithms
Algo- | Parame- TSP instance
rithm | ter eil51 | eil101 |kroB150 | kroA200
T, 100000 1000000
SA
o 0,99975 | 0,9999 | 0,99995
N, 15
TS
N, 50
N, 10 | 20 | 15 | 10
o 1,0
2,5
ACS B
c 0,1
P 0,1
4, 0,9

The parameters of the algorithms were chosen accord-
ing to [4], [5], [7]-][11]. The number of ants in ACS were
adjusted in such a way that enough iterations (>20) were
performed on each trial to show the effect of exploiting
search history. In SA, initial temperature T, and a coef-
ficient were tuned so that on each trial, the system com-
pletely cooled down during ~75% of iterations.

The optimization process for eil57 TSP instance was
visualized. Figure 1 shows the relationship between A and
the iteration number. A is the absolute difference between
the tour length on the current iteration of SA algorithm
and the optimal tour length for this problem.
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Fig. 1. Simulated Annealing optimization process (eil51)

For TS, the relationship between A and the iteration
number is shown in Figure 2. Here, A is the difference be-
tween the best candidate tour length (there are N, candi-
dates on each iteration) on the current iteration and the
optimal tour length for this problem.

yyyyyyyyy

Fig. 2. Tabu Search optimization process (eil51)

Figure 3 shows the relationship between A and the it-
eration number for ACS. A is the difference between the
best (of N_ants) tour length on the current iteration and
the optimal one.

Fig. 3. Ant Colony System optimization process (eil51)

Analysis of results. Table 1 shows that all the de-
scribed approaches were able to obtain tours that are close
to the optimal one. For instances with 51 and 101 cities,
found tours are 5—10% longer than the optimal tour (Fig.
4, 5, 6). Tours found for problems with 150 and 200 cities
are 10-25% longer than the optimal tour. Experiment re-
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sults also show that Simulated Annealing produced the
best results on all the TSP instances. Ant Colony System
algorithm found better tours than Tabu Search, in 3 out
of 4 problem instances. The quality of Tabu Search solu-
tions significantly degraded with increase in the number
of cities.

Fig. 4. Optimal tour in eil51

Fig. 5. Tour in €il51, which is 5.16% longer than the optimal
tour

Fig. 6. Tour in eil51, which is 9.86% longer than the optimal
tour

CONCLUSIONS

In this paper, Simulated Annealing, Tabu Search and
Ant Colony System algorithms were described in the con-
text of solving the Travelling Salesman Problem.

The performances of these approaches on four TSP in-
stances with known optimal solutions were experimental-
ly compared. Particularly, the length of a tour obtained by
each algorithm in the same amount of time was compared.



// MexxayHapopfHbIn HayuHbIl sxypHan // Ne 2, 2016

This experimental study showed that the Simulated
Annealing algorithm produced the best solutions to all
the problem instances. The solutions obtained by the Ant
Colony System were slightly worse. Tours found by Tabu
Search were the longest. With the increase of number of
cities, the absolute difference between the length of the
found tour and the optimal one grew considerably slower
for Simulated Annealing, slightly faster for Ant Colony
System, and the fastest for Tabu Search.
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These results give grounds to believe that Tabu Search
will scale worse to larger problem instances than Simu-
lated Annealing or Ant Colony System. It should also be
noted that although Simulated Annealing performed bet-
ter than the other algorithms, adjusting its parameters to
the specific problem size and time limit is more sophisti-
cated than for other approaches.
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