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METO/, PO3B’I3YBAHHY! CUCTEMU PIBHAHb BAPIAHTA MATEMATUYHOI
TEOPIi HE TOHKUX MOJIOTMX ObOJIOHOK

METO/] PELLEHNA CUCTEMbl YPABHEHUW BAPUAHTA MATEMATUYECKOW
TEOPUU HETOHKUX MOJOIMX ObOJIOYEK

METHOD OF SOLUTION EQUATION SYSTEM WITHIN THE VARIANT OF
MATHEMATICAL THEORY OF NON-THIN SHALLOW SHELLS

UHAVYH FUHIIRULVINILVIN-OHUEND

AHoOTaUif. B CTATTi 3anponoHOBAHO METOg, kWil gae MOX/IMBICTb 3BeCTU PO3B'A3YBA/IbHY CMCTeMy HEOGHOPIGHUX gude-
PeHLianbHUX PIBHAHD i3 YACTUHHUMM MOXIGHUMM WICTHAGUATOR0 MOPAGKY BAPIAHTA MATEMATUYHOI TOPIl He TOHKMX M0/02MX
000/10HOK go grepeHLianbHUX piBHSHbL gpy2020 i YeTBepTo20 NOPSgKiB. BUKOPUCTOBYETHCA METOg 30ypeHb 2e0METPUYHMX
napametpis i 0nepaTopHui MeTog.

KmoyoBi cnoBa: BapiaHT MaTemMaTuyHoi Teopii, He TOHKa no/02a 060/I0HKA, CUCTEMA HEOGHOPIGHUX guepeHLianbHNUX
PIBHSHb i3 YGCTMHHMMM NOXigHUMM, MeTOog 30YpeHb, 0rnepaTop.

AHHOTaAUMS. B CTaTbe npegnoxeH MeTOg, KOTOPbIN gaeT BO3MOXHOCTb MPUBECTU PA3PeLLAIOLLYI0 CUCTEMY HEOGHOPOGHbIX
gnpepeHumanbHbIX YpaBHeHMIi B 4GCTHbIX MPOM3BOGHBIX LIECTHAGLATO20 MOPSgKa BAPUAHTA MATeMATMYECKON Teopum He
TOHKMX o1021x 060/104ek K gudPepeHumanbHbIM ypaBHeHNsIM BTOPO20 U 4eTBepTo20 Nopsigkos. MCrosb3yeTcst MeTog BO3My-
LjeHNs1 2e0MeTPUYECKMX MapamMeTpoB M 0NepaTopHbIii MeTog.

KntoueBble C10BA: BAPUAHT MATEMATUYECKOI Teopyu, He TOHKAsH 10/102as1 000/104Kd, CMCTeMa HeOGHOPOGHBIX gugpepeH-
UManbHbIX ypABHEHWV B YACTHbIX MPOM3BOGHBIX, METOg BO3MYLLEHMI, 0repaTop.

Summary. In this paper, method is offered enabling reduction of resolving system of heterogeneous partial-derivative differ-
ential equations of the sixteenth order within the variant of mathematical theory of non-thin shallow shells to the differential
equations of the second and fourth orders. A method is used of geometrical parameters perturbation and symbolical method.

Keywords: variant of mathematical theory, non-thin shallow shell, system of heterogeneous partial-derivative differential
equations, method of perturbations, operator.

Introduction. In the case of steep gradient of the stress-
strain state (SSS) variation, classical theories of thin
and non-thin plates and shells under conditions of local
loads, existence of holes and sharp variation of mechan-
ical and geometrical parameters provide unsatisfactory
results, which could substantially differ from exact ones.
Non-classical theories based on various hypotheses and

assumptions for the very large class of boundary prob-
lems are also basically unable to describe SSS of plates
and shells with any high accuracy, since SSS components
are represented as a small number of summands. In addi-
tion, obtained differential equation (DE) systems are of
low order. Studies on various theories are reviewed in [1,
P.3-32; 2, P. 22-57].
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Approach offered in [3, P. 51-58] for calculation of
plate under the skew-symmetric loading in the first two
approximations was generalized by author in a number of
studies for the physically linear and nonlinear, solid and
laminated non-thin plates and shallow shells (reviewed
in [4, P. 21-30]). The developed variant of mathemati-
cal theory of non-thin elastic plates and shallow shells [4,
P. 21-30] is based on 1) representation of all SSS compo-
nents as three-dimensional functions represented by the
Legendre polinomials series depending on the transverse
coordinate and satisfying exactly to the boundary condi-
tions on the face planes (surfaces); 2) the use of the vari-
ational Reissner’s principle [5, P. 90-95] for reduction of
three-dimensional boundary problem for plates and shells
of arbitrary constant thickness to two-dimensional one;
3) the use of coupled equations. As a result, boundary
problem is reduced to the solution of the heterogeneous
partial-derivative differential equation (DE) system with
respect to constituents of motion components. The DE
system order and boundary problem solution accuracy
are determined by the number of terms retained in series.

The point to be emphasized is that SSS components
presentation as series basically enables its determination
with any high accuracy. However, that results in increased
mathematical complexity, since order of the partial-deriv-
ative DE systems is increased with respect to the sought-
for functions. Consequently, a need arises in development
of mathematical methods of high order heterogeneous
DE systems reduction to low order equations, in partic-
ular, to second and fourth order equations.

1. Problem formulation. From the perspective of
three-dimensional elasticity theory, transversely isotro-
pic shallow bicurved shell of arbitrary constant thickness
h is considered in the Cartesian coordinate system Ouxyz.
Oz axis, of which origin is in the median shell surface,
is directed toward its convexity. Skew-symmetric loading
is applied to the shell. Boundary conditions on the face
surfaces are as follows:

o (z=th/2)=Fq(x,y)/2;
O'xz(z:ih/2):0y2(2:ih/2):(),

where g(x,y) — transverse loading intensity.

Boundary conditions on the lateral surface, which is
assumed to be normal to the median shell surface, can be
specified in stresses, motions or in stresses and motions
(mixed problem).

The next two paragraphs provide outline of basic re-
lationships and equations of the considered variant of
mathematical theory previously obtained by author.

2. Approximation of SSS components. Constituents
of motion components U(x,y,z), V(x,y,2), W(x,y,z) are
represented by series with the use of the Legendre poli-
nomials:
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= 9
U(x,y,2)= ZPk(f)uk(x,y)(U,V;u,v),W(x,y,Z) =

) = €))
=3P Gy )

k=1

where P,(2z/h) — Legendre polinomials, u,(x,y),
v, (x,y), w,(x,y) — sought-for constituents of motion
components.

For the transversely isotropic non-thin shallow shell,
of which isotropy plane is parallel to the xOy plane at
each point of space, dependencies between strains and
motions are represented as the following series:

o0 o0
g, =26, (1Y) &, =Z;ng ;
<

Jj=0

7yx=27y17’;yxz:zyxzj7(x7y)y (2)
j=0 J=1
where
ou;(x,y)
ng(x’yvz):Pj[;T+k1wj+1(x’y) )

(x,y;u—>vk —>k);
£,(x,y,2)=P/w;, (x,y);

ou,(x,y) 00,(x,y)
+
oy ox

’

yyxj(xh%z):Pj(

aw)j+1(x7y) ' '
7xzj(xryvz):P]'T'i'Pjuj(xvy)_kinuj(xvy)’

(x,y;u— vkl > ky);
(0 y;U—>Viki>k), (b =1/R, k'=k,i=12;
k, =k +kov; k, =k +kv).

Here k,, k, are principal curvatures, and R,, R, are
main curvature radii of median shell surface. Since the
shell is non-thin one, expressions for the transverse an-
gular strains 7,,,7,. takeintoaccount the tangential dis-
placement components by means of summands contain-
ing k' and &, (these are ignored in classical theory).

Stresses in shell are also represented as series:

o.(xy,2)= ZPI.L‘H.; ayz(x,y,z) = ZPI,KW. ,
i=0 i=0
O-z(x’y72):z})iszi ; (3)
i=0
o-x(x,y,z) = ZRsz (O-x =0, s, Syi) ’
i=0
o, (%,4,2)=2 Pt,.,
i=0
where ¢,..,t,; depend on w,(x,y), v,(x,y), ©,(x,y)
and their derivatives [4, P. 21-30].
If we assume curvatures k and &,, & and k; in (2)

and (3) to be equal to zero, we obtain respective depen-
dencies for plate.
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3. Initial differential equation system and its trans-
formation. Let us consider the skew-symmetric trans-
verse loading as the approximation 2=0,1,3 (constitu-
ents with subscripts 0, 1, 3, i.e. u,,u,,u,; v,,0,,05; are only
taken into account in series (1) for tangential components
of motion U(x,y,z) and V(x,y,z); then constituents w,
and w, are only taken into account for the transverse mo-
tion W(x,y,2)). Resolving equations are represented by
the following heterogeneous partial-derivative DE sys-
tem [6, P. 131-139]:

VitiMo e T V112805 T 71210 1y +k1m1w1,x + k1w3w3,x =0; (4)
Y1218 2y T 711200 20 T 711100, T+ k2w1w1,y + k211/3w3,y =0;
Biistty + Brsgtts + Bidy o + BioWiy, + Bisds . + Bz, +
+P16105, = Bud .5
B30 + Biasvs +:3111¢1,y =B +ﬂ131¢3,y +:B151w1,y +
+ﬂ161w3,y = ﬁu1q,y;

Brssthy + Bagsths + Bigy Py, + Bagi Py, + ﬂ332‘//3,y + Pos@,, +

036105 . = Buad s

BiazO + Bags0s + Biss@y, + Pos®s, = BagsWs . + Posi@y, +
+ﬂ361w3,y = ﬂu3‘],y§

kmuo,x + k2w100,_1/ + Bisif + Basi Py + (ﬂ551V2 1,0, +

H(Bst V" + 110 )y = By

k1?113u0,x + k2msvo,y + B9 + B s + (ﬂ561V2 +71,3)0; +
BtV + Bigs + 1303 )0 = B4,

where ¢,(x,y)=u,, +o,, vi(vy)=u,, -0, v? — La-
placian operator, y,8,kr with subscripts are mechani-
cal and geometrical parameters (MGPs) determined by
mechanical and geometrical shell constants. Please note
that subscripted y and g constants are independent of
curvature, i.e., the same as those for plate. Curvatures are
only included in subscripted 2 and r MGPs. Therefore,
if we assume the latter to be equal to zero, then the system
(4) represents the resolving equations for the transverse-
ly isotropic plates (first two equations describe the flat
problem, and last six ones describe problem of bending).

System (4) is reduced to two systems by means of
mathematical transformations.

One of systems, namely, homogeneous fourth order
system with respect to two vortex functions y,(x,y) and
w,(x,y), describes a vortex edge effect (equations for
plates are similar ones):

Bz, +ﬂ112vzl//1 + B =0,
Pz Wi+ Paso Vz‘/’s + B =0,

Other system, namely, twelfth order coupled hetero-
geneous DE system with respect to u,, v,, @,,w, constit-
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uents (let us denote these as basic ones), describes inter-
nal SSS with the potential edge effect:

P, gu,+ P 0, + P w +P, w0, =P, q,(i=1234), (6)

where subscripted P — differential operators contain-
ing MGP. The other constituents of motion components
are represented through the basic constituents from the
third—sixth equations, in which ¢,(x,y) and ¢,(x,y) are
expressed from seventh—eighth equations.

4. Method of perturbations. Resolving equations.
We offer the method allowing reducing of mathematical
complexities of solution of main equations (5) and (6).
Let us introduce small parameter e=h /(R,+R,) . Then
subscripted £ and r MGPs are represented as follows:

k1ml = K17[11 & klmB = K1m3 s k2ml = K2m1g’ k2m3 = KZZ/JS & (7)

_ 2 _ 2 _ 2
Tt = Ry € Ny = Ry 387, 13y = Ry 387

where K, _,,...R, , are final constant values independent
of parameter ¢ .

The solution of the homogeneous DE system (5) is not
difficult. Tt is reduced to the solution of two Helmholtz
equations.

We solve the system (6) by the method of perturba-
tions of geometrical shell parameters followed by the use
of operator method for the solution of the obtained equa-
tions in every approximation.

We represent basic constituents of motion components
as series in terms of the small geometrical parameter ¢ .

uo(x7y)=i€i U (2, y), (,0); w0, (x%,y) =
. L®
= Zgl w,;(x,y), (w;,w;)

where uy; (x,y), vy, (x,9), w,,(x,y), 0, (x,y) — sought-
for functions.

Constituents of stress components, other constituents
of motion components and lateral surface boundary con-
ditions are also expanded into similar series (8).

By the asymptotic splitting of the DE system (6) tak-
ing into account (7) and (8), we obtain following two DE
systems with respect to u,;,v,; and w,;,w;;:

In the zero-order approximation:
homogeneous system of 4" order

M11”00 + M12000 =0;

9)
M uyy +M,,0,, =0
and heterogeneous system of 8" order
1 w,+11 w0, =1 g;
11%®10 13@30 1q (10)

1w, + 50, = quQr

where M,,,...M,,, II

tors of 2"t order; I7,, ...,

1y 115, — known differential opera-
I,, — those of 4" order.
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In the subsequent approximations (i=1,2,..), we
also obtain two systems:
heterogeneous system of 4™ order
M, u,; + My,0,, =Q1(i—1); (11)
M12u0i + M22Z)0i = Q2(i—1)
and heterogeneous system of 8 order
I, w,+11,w0,, =P, ,;
1@ 13Ws5 13i-1) (12)

H31w1i + H33w3i = Ps(H)'

Right-hand sides of equations (11) depend on the
solutions of previous (i—1)" approximation of the sys-
tem (12), and right-hand sides of equations (12) depend
on the solutions of previous (i—1) " approximation of the
system (11) and the solutions of (i—2) * approximation
of the system (12).

The system (9) corresponds to the flat problem of
elasticity theory for plate, and (10) corresponds to the
problem of plate bending. Systems (11) and (12) speci-
fy the solutions of flat problem and problem of bending,
respectively.

When using this method of perturbations, lateral
surface boundary conditions in the zero-order approxi-
mation would be generally heterogeneous, and would be
homogeneous in the subsequent approximations.

So, boundary problem for non-thin transversely iso-
tropic shell in the considered approximation (k=0,1,3)
is reduced by the method of perturbations to the follow-
ing resolving equations: homogeneous and heterogeneous
systems of 4" order and two heterogeneous systems of 8
order.

3. Reduction of the systems (9) — (12) to equations
of 2" and 4% orders. Let us consider the heterogeneous
system of 8™ order (systems of (10) and (12) type). These
systems are structurally similar and only differ in right-
hand sides. For convenience, we write the system of (10)
(or (12)) type as follows:

1w, + 11w, :fﬁ
1w, + 11w, :f37
where f, = f(x,y),/, = /;(x,y) — known functions.

The system of (13) type is reduced by the operator
method to following two heterogeneous DE of 8% order

(14)

(13)

D,D,D,D, F,(x,y)= [, (x,y) (i=13),
where D, — differential operators of 2" order:

D, =V?, D,=V*, D,=(V*-a,), D,=(V*-a,).(15)

Here a,,a, —some constants being roots of character-
istic equation (these can be complex ones).

The general solution of the system (13) is expressed
through the general solution Fy(x,y) of the homoge-
neous equation corresponding to (14) and two partial

140

// MixxnapopHui HaykoBui sxxypHan // N2 7, 2016

solutions F,,(x,y) and F, (x,y) of heterogeneous equa-

tions (14):
w1(xvy) = H33(F +F ) H13 37’
wa(x’y) = _H31( +F ) + H11 3 (16)
where
F(ey) = Fiy(oy) + Fyp(ey) + Fpy(xey). (17)
Here F,, — general solution of bi-harmonic equation

V*'F,=0, F,, and F,, — general solutions of two dif-
ferential Helmholtz equations:

(V2 —ay)F;,(x,y)=0, (V2 —a)F;,(x,y)=0.(18)
We then obtain partial solutions of equations (14) by
operator method through the partial solutions of hetero-
geneous equations of 2" and 4 orders.
Let us consider equation of (14) type:

D\D,D,D, F(x,y)= [(x,y), (19)

where f(x,y) — known function, and F(x,y) — sought-
for function.
We represent partial solution F (x,y) of equation

(19) as follows:

—f(xy),

F.(x,y)= DD,D.D,

(20)

where 1/(D,D,D,D,) — inverse operator.
Then suppose F, (x,y),(i=1,..,5) are partial solu-
tions of heterogeneous equations:

DF(x,y)=f(x,y) (i=1,..,4), D,D,F,(x,y)=f(x,y).

These solutions can be represented through inverse
operators as follows

E, (o) = S ) (o=

172

Jxy) . (21)

We transform rlght—hand side of equation (20) taking
into account commutativity and associativity of opera-

tors:

1
DD, D b0,0,0,” <D1D3><D2D4>f:
1 1

~(D,-D, )(D__D )(D -D, )(F_D_)f

With consideration of (15), we obtain

1.1 1 1
F = (——)—(———)f =
' as(D D) (D4 Dz)f
1 1 1 1 1

— ( — - + =
aa‘DD D,D, DD, DD)f

1
a3a4((D D)(F_F)_(D D)(F_F)_

(D,-D, )(F_F DD,
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- ()

(* *) *(* *) -/ =

aa, a,—a, D, D,” (- a3) D, D, D, DD
1 11 11 1
=——( B[
a,a, a;, D, a; D, (a,-ay)a,D, (a,—ay)a,D, DD,

Partial solutions F,(x,y) and F, (x,y) of first
two equations (21) can differ by the arbitrary harmon-
ic function, but since our concern is with the arbitrary
partial solution of equation (19), we can assume that
FE, (x,y)=F, (x,y). Then taking (21) into consideration,
we obtain the final expression for the partial solution of
equation (19):

a, +a
E-(x$y)= ! (( 2 4)I:“_ 04 F37+
asa, a,a, (a; —ay)a;
a, (22)
E,)
(a; —ay)a,

Thus, partial solution of partial-derivative differen-
tial equation of 8" order (19) is represented by the linear
combination of partial solutions of as follows: Poisson’s
equation, two heterogeneous Helmholtz equations and
heterogeneous bi-harmonic equation.

The general solution of the system (10) (and (12))
with consideration of (14), (16)—(18), (22) is expressed
through the general solutions of bi-harmonic equation
and two Helmholtz equations, and partial solutions of
heterogeneous bi-harmonic equation, Poisson’s equation
and two heterogeneous Helmholtz equations.

The general solution of the system (9) (and (5)) is ex-
pressed through the general solutions of two Helmholtz
equations, and general solution of the system (11) is ex-
pressed through the general solutions of two Helmholtz
equations and partial solutions of two heterogeneous
Helmbholtz equations.

The integration constants included in the gener-
al solution of the system (4) at every approximation in
terms of the small parameter, are defined by the lateral
surface boundary conditions.

Remark. The used operator method here is implied
also by method of differential equations [7, P. 60—66; 8,
P. 154—159] order reduction.
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6. On convergence of series (1) and (8). Let us for-
mulate (without proof) the series (1) and (8) conver-
gence theorem.

Let us denote the closed domain of three variables
x,y,2, which is occupied by shell, as C, (¥y — tan-
gential coordinates, transversal coordinate:
~h/2<z<h/2), and respective x,y variation domain
as C,, .

Theorem 1 (about convergence of series (1)). If the

z —

functional series » u, (a,y) is uniformly and absolutely
=0
convergent in the EV domain, then series

kiwz/h)uk (x,.9)

is also uniformly and absolutely convergent in the C, do-
main.

Theorem 2 (about convergence of series (8)). If func-
tions u,,(x,y) are uniformly bounded in the C,, domain,

then series igi u,;(x,y) is uniformly and absolutely
i=0
convergent in this domain.

The formulated theorems are true for other series (1)
and (8).

7. Conclusions. Applied equation rearrangement
method, use of operator method and method of pertur-
bations of geometrical parameters result in reduction of
resolving heterogeneous partial-derivative differential
equation system of 16" order within the variant of math-
ematical non-thin transversely isotropic shells theory to
the solution of equations of the second and fourth or-
ders (Laplacian and Poisson’s equations, homogeneous
and heterogeneous Helmholtz equations, bi-harmonic
and heterogeneous bi-harmonic equations). The offered
method enables considerable simplification of solution of
boundary problems for the non-thin shallow shells and
could be also extended to solution of problems for shells
in the framework of other theories.
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