Жижко Владимир Абрамович

независимый эксперт

ГЕОМЕТРИЧЕСКАЯ МОДЕЛЬ ЯДЕР ПРИ МИНИМАЛЬНОМ КОЛИЧЕСТВЕ СИЛЬНЫХ СВЯЗЕЙ THE GEOMETRIC MODEL OF THE NUCLEUSES BY MINIMUM QUANTITY OF THE STRONG BONDS

Аннотация. Предложенная элементарная статическая геометрическая модель ядер из нуклонов с четырьмя связями описывает способ образования формы ядер и формообразующие кластеры, объясняет главные особенности масс-спектров деления, позволяет вывести дискретную формулу энергии связи ядер. Выявлены два пути увеличения массового числа — концентрический и линейных цепочек кластеров. Различие формы ядер с одинаковым составом нуклонов выглядит в модели как причина изомерии. Указана возможная аналогия между формами ядер и формами доступных наблюдению кластеров аморфного кремния.

Ключевые слова: форма ядер, тетраэдр, кластеры, энергия связи.

Summary. Offered the elementary static geometric model of nucleus from nuclons with 4 bonds describes the method of nucleus formation and shape-generating clusters, explain main features of fission mass-spectrums, allows to show out discrete of nucleus binding energy formula. Two ways of mass number increase are educed – concentric and linear chainlets of clusters. The Form Distinction of nucleus with a equal nuclon depot looks in a model as the isomeria reason. A possible analogy is indicated between the forms of nucleus and accessible to the supervision by the clusters of amorphous silicon.

The Key Words: nucleus form, tetrahedron, clusters, binding energy.

Введение

Обычно ядра атомов изображают в виде почти сферического или эллипсоидного сгустка из шариков-нуклонов. Такая форма ядер считается практически установленной [1]. В последнее время появились работы, в которых структура ядра напоминает фрагмент кристаллической решётки. В [2] рассмотрены ядра из шариков-нуклонов, сложенных в кубическую решётку.

Важным свойством ядерных сил является насыщение. Под этим понимают, что нуклон взаимодействует с ограниченным количеством других нуклонов в ядре. Другими словами, каждый нуклон может участвовать в конечном количестве сильных связей. Будем отображать нуклоны шариками, а связи нуклона — контактными точками взаимного касания шариков, симметрично расположенными на поверхности шариков.

Взаимное расположение точек на поверхности шарика зависит от их количества. Вначале предположим, что каждый нуклон имеет по одной связи. В этом случае самым большим ядром был бы дейтрон. Если приписать нуклонам по две связи, то ядра имели бы форму нитей, что также не наблюдается. Для нуклонов с тремя связями сами связи были бы расположены на эффективном диаметре нуклона, а ядра были бы плоскими, т.е. трёх связей тоже недостаточно. Для случая четырёх связей проведём через точки-связи касательные плоскости, которые взаимно пересекаясь, образуют описанный вокруг шарика тетраэдр. Поэтому для модели нуклонов с четырьмя связями можно вместо нуклонов-шариков оперировать с тетраэдрами, что и использовано в данной работе. Для нуклонов с количеством связей более четырёх можно использовать знания из таких разделов как структура молекул, кристаллография, теория квазикристаллов. Природа связей там другая, но это не может быть препятствием для применения структурного подхода к изучению ядер. (Это верно хотя бы потому, что химических связей есть несколько типов, и ко всем из них структурный подход применим). В работе [2] фактически рассмотрен конкретный вариант с количеством связей нуклона, равным 8. Построение подобных моделей позволяет, в частности, установить - как топология связей влияет на геометрическую форму ядер.

В приведенных рассуждениях неявно предполагалось: 1 — количество связей нуклона (задействованных в объёме и поверхностных) не является ситуативным, а есть постоянная величина, 2 — эта величина одинакова для протонов и нейтронов. Справедливость обоих предположений не очевидна

и заведомо ограничена состояниями ядер, близкими к невозбуждённому.

Из изложенного следует, что для нуклонов с четырьмя связями в качестве удобного инструмента можно принять тетраэдр (сокращённо – тет) – правильную пирамиду, все рёбра и все грани которой одинаковы и все плоские углы на гранях равны 60° (рис. 1, а). Фактически тет является элементарной ячейкой, из совокупности таких ячеек попытаемся складывать макеты ядер. (Отношение объёмов шарика и описанного вокруг него тетраэдра примерно равно 0.3). Такой подход позволяет ответить на вопрос о форме и некоторых свойствах ядер при минимальном количестве сильных связей для нуклонов в ядре, а также объяснить некоторые свойства более естественно, чем в других моделях. В тет-модели связи посредством ядерных сил между нуклонами отображаются прилеганием граней (контактных точек), но не касанием рёбрами или вершинами. У тета 4 грани, т.е. каждый нуклон в ядре может иметь от 1 до 4 связей и только с ближайшими соседями. Такая модель отображает короткодействие, насыщение и нецентральный характер ядерных сил. Будем рассматривать конструкции из тетов с возможно более плотным заполнением. Из всех видов правильных многогранников только куб допускает плотную упаковку без пустот. Двугранный угол тетраэдра примерно равен 70.5°, а для оси симметрии пятого порядка как у квазикристаллов нужно 72°. Поэтому все дальнейшие упоминания о симметрии структур из тетов следует понимать как симметрию с небольшими отклонениями от точной. Это отклонение может быть использовано для объяснения небольшой нецентральности сильного взаимодействия. Трансляционная симметрия для конструкций из тетов возможна только в одном направлении. Отличие от кристаллов с тетраэдрической симметрией — решётка типа алмаза, рассмотрено ниже.

1. Структура лёгких ядер

Далее используются обозначения: N — к-во нейтронов n в ядре, Z — к-во протонов р, A — общее к-во нуклонов в ядре, A=N+Z. Ядро будем обозначать как Nu(A, Z), где Nu — конкретное название химического элемента. При «конструировании» ядер не будем делать различий между протонами и нейтронами. Это позволяет одной конструкцией представить все изобары (но энергия связи изобаров с различным составом нуклонов, естественно, различна). На рис. 1, *а* показана модель атома водорода. На рис. 1, *б* — дейтерий D(2,1), 1, *в* — тритий T(3,1) или He(3,2), рис. 2, *a*, *б* два варианта построения He(4,2) и Li(4,3).У изобаров с пятью нуклонами есть 5 вариантов конфигураций, на рис. 3 показаны две наиболее симметричные. У фигуры на рис. 3, δ к-во граней поверхности равно 12, к-во связей — 4 и все прилегания граней связи плотные (т.е. максимум действия ядерных сил). У фигуры на рис. 3, *а* поверхность — 10, связей — 5, но есть особенность — углы между гранями тета примерно равны 70.5°, что препятствует плотному прилеганию граней, особенно в конфигурациях с большим к-вом тетов. Для плотного прилегания всех пяти связей на рис. 3, *а* нужен был бы угол между гранями 72°. Таким образом, в фигуре на рис. 3, *а* имеется зазор в 1.5° на каждую связь. При таком равно-мерном распределении зазора между всеми тетами, фигура на рис. 3, *а* имеет симметрию вращения 5-го порядка. Обозначим эту фигуру как блок S (star).

Рис. 1, *a* — тет, *б* — дейтерий, *в* — тритий

Рис. 2. Варианты конфигураций из четырёх тетов

Рис. 3. Симметричные конфигурации из пяти тетов: $a-{\rm S}, \delta-{\rm R}$

2. Таблица блоков, интерфейсы, иерархия

Более компактным является табличное описание и введение иерархии структур. При составлении фигур с постепенно возрастающим к-вом тетов, поверхности объёмных фигур приобретают различные формы, причём разнообразие форм участков поверхности невелико. Например, поверхность блока S образует два выпуклых пятигранника. Если найдётся объёмная фигура с вогнутым пятигранником, то к такой фигуре можно присоединить блок S. Поэтому такие участки поверхности назовём интерфейсами. Введём простые обозначения для типов интерфейсов: + выпуклый, —

Таблица 1

_1	_2	_3	_4	_5	_6	_7	_8	_9	_10
1	0	4	1.a	3	4	t (tet)	t	_1	H(1,1)
2	1	6	1.б	3	1	D (deyterium)	tt	3(2+)	D(2,1)
3	2	8	1.в	2	2	T (tritium)	Dt	4(2+), 2-	T(3,1)
4	3	8	2.б	3	3	E (hElium)	tΤ	3(2+),3(2-)	He(4,2)
5	5	10	3.a	5	6	S (star)	DT	2(5+)	Li(5,3)
5	4	12	3.б	3	12	R (thoRn)	tTt	6(2-)	He(5,2)
10	10	20	4.a	5	5	W (wheel)	5D	2(5-)	B(10,5)
10	12	16	4.б	3	10	G (gag)	S5t	3(5+)', 6-	Be(10,4)
11	13	18	4.в	3	4	M (main)	D3T	3(6+)	B(11,5)
12	15	18	4.г	2	2	H (helmet)	SttS	4(5+)', 6-	C(12,6)
16	18	28	5.a	3	36	O (oxi)	4E	4(6=)	O(16,8)
17	22	24	5.a	3	36	F (full oxi)	t4E	4(6=)	F(17,9)
20	30	20	5.б	5	30	B (ball)	SWS	12(5+)'	Ne(20,10)

Младшие тет-блоки

вогнутый, = выпукло-вогнутый. Допустимые сочетания при соединении блоков: (+ –) и (= =). Пример описания интерфейса выпуклого пятигранника: 5+. Табл. 1 содержит описание некоторых блоков, важных в тет-системе. В таблице номера полей означают:

- 1 к-во нуклонов в тет-блоке;
- 2 к-во связей;
- 3 к-во граней поверхности;
- 4 номер рисунка;
- 5 порядок симметрии вращения;
- 6 к-во плоскостей зеркального отражения блока;
- 7 буквенный символ тет-блока;
- 8 структурная формула блока;
- 9 интерфейсы блока;
- 10 химическое название примера изобара.

Пояснение к колонке 9 — запись 4(5+)' означает: 4 интерфейса 5+, штрих означает, что некоторые части поверхности принадлежат разным интерфейсам (интерфейсы перекрываются). Табл. 1 содержит блоки для построения средних и тяжёлых ядер. Построим примеры ядер из блоков. WBW — конфигурация с симметрией вращения 5-го порядка, представляет изобары из 40 нуклонов, в том числе Ca (40,20). SWSWS (она же BWS) — та же симметрия, 35 нуклонов. Это линейная цепочка, которую можно наращивать добавлением WS. Одной из особенностей этих линейных цепочек является наличие на их боковой поверх-ности интерфейсов 6+, что позволяет присоединять к ним блоки с интерфейсом 6- (блок Н) и образовывать двумерные конфигурации. Структурную формулу двумерной конфигурации можно условно записать как

Название полученного блока — Ү, симметрия — две зеркальные плоскости, ось вращения 3-го порядка, А=47. Важной особенностью блока Ү является наличие с двух сторон Ү одинаковых интерфейсов 6= (рис. 6, *a*), позволяющих соединять блоки Ү в цепочки, отвечающие изобарам с массами 47, 94, 141, 188, 235.

Рис. 5. *а* — вторая координационная пирамида, *б* — тет-сфера (почти икосаэдр)

Рис. 6. а — блок Ү, б — конфигурация ҮҮ

// Фізико-математичні науки //

Вследствие одинакового положения интерфейсов 6= в Y, блоки с чётными номерами будут повёрнуты по отношению к нечётным на 60°.

3. Ядро U (235,92)

Среди изобаров с массой 235, которым соответствует конфигурация YYYYY, рис. 7., наиболее изучен U(235,92). Из-за дальнодействия кулоновских сил отталкивания для ядер в основном состоянии устанавливается равномерное распределение протонов. Такому распределению соответствует следующее разбиение протонов по блокам Y

или

3*18p + 2*19p = 92p

3(18p + 29n) + 2(19p + 28n) = 235

Условно — ядро U(235,92) составлено из трёх ядер аргона Ar(47,18) и двух ядер калия K(47,19). Если делить цепочку YYYYY на две части по слабым местам — интерфейсам 6=, т.е. с кратностью Y, то получатся варианты деления

18,18,18,19,19 => (18,74), (36,56), (54,38), (73,19)

Если учесть все варианты расположения Ar и K в цепочке, получим следующие пары осколков деления:

криптон — барий 36 и 56 протонов рубидий — цезий 37 и 55 стронций — ксенон 38 и 54 (1) аргон — вольфрам 18 и 74 калий — тантал 19 и 73

Все перечисленные элементы действительно наблюдаются при делении ядер U235. В капельной модели ядер деление описывается как процесс деформации ядра, образования перемычки и разрыва капли на две части. В тет-модели перемычки («интерфейсы») заложены уже в самой форме ядра, что позволяет сразу определить перечень основных продуктов деления. Содержание и простота получения перечня (1) — главные аргументы в праве на существование тет-модели.

Первые три пары в (1) соответствуют двум максимумам (пикам) на известной двугорбой кривой масс-спектра деления U235 [3]. Кривая проведена по 30 парам точек (к-во каналов реакции деления U235). Как известно, явление деления ядер было открыто после обнаружения бария в результате облучения урана нейтронами. Отношение атомных масс для первых трёх каналов реакции равно 2:3, для двух последних — 1:4, что следует из одинаковости (изобарности) блоков цепочки. Примеры действительно наблюдаемых реакций: U(235,92) + n(1,0) -> Xe(134,54) + Sr(100,38) + 2n(1,0) U(235,92) + n(1,0) -> Ba(141,56) + Kr(92,36) + 3n(1,0)

Из уравнений видно, что равномерная концентрация протонов сохраняется не только в возбуждённом ядре, куда попал тепловой нейтрон, но и в продуктах деления. В начальный момент деления протон удер-

Рис. 7. Ядро U235 в тет-модели. Вверху — эскиз, внизу — макет

живается в кластере за счёт кулоновских сил, которые в данной ситуации проявляются как силы трения. А в нейтрон-избыточных осколках протон сохраняется как дефицитный ресурс. Для нейтронов оба этих фактора отсутствуют. Это объясняет появление свободных нейтронов и перераспределение нейтронов между осколками. Некий произвол с количеством нейтронов в осколках означает, что в масс-спектре деления U235 могут быть разные изотопы химических элементов, перечень которых приведен выше. Поэтому правильнее говорить, что тет-модель описывает не масс-спектры деления, а состав. химических элементов — продуктов деления.

Естественно ожидать, что все изобары с А=235 имеют похожую схему деления, в частности, осколки в соотношении масс 2:3 и 1:4. Заключение о масс-спектре деления здесь полностью получено из рассмотрения статической структуры ядра. Аргументы капельной модели не использованы явно, они определяют в основном энергию нейтронов, инициирующих деление. Тет-модель статической структуры можно назвать моделью набора кластеров, она может оказаться полезным дополнением к оболочечной модели как средство уточнения симметрии и поля волновых функций ядра. Кластерный подход к изучению структуры и свойств ядер как продуктивный успешно применяется как в теории, так и для анализа экспериментов, напр. [4].

Рассматривая модель ядра U235 как цепочку из пяти осцилляторов, можно оценить параметры реакции деления под действием гамма-квантов (фото-деление). Для резонансного возбуждения цепочки связанных осцилляторов необходимо чтобы между центрами начального и конечного звеньев цепочки уложилось целое число волн. Указанное расстояние можно оценить в 20 Фм, что соответствует энергии фотона примерно в 10 Мэв. Деление U235 гамма-квантами с энергией в 6 Мэв было установлено в 1939 г. [5]. (Здесь уместен вопрос — приведёт ли облучение гамма-квантами с вчетверо меньшей длиной волны к развалу ядра на пять кластеров и соответственно увеличенным выходом энергии деления?). Как механическая структура цепочка из блоков У может обладать также резонансами изгибания и кручения (поперечные и торсионные колебания). Далёкая от сферы форма ядра U235 может объяснять аномально высокий внешний квадрупольный момент — 4 барн.

На основе анализа масс-спектра деления можно пытаться определить структуру ядра. Для примера рассмотрим Pu(240,94). Предположим по аналогии с U235, что ядро Pu(240,94) состоит из нескольких одинаковых кластеров. Искомое к-во обозначим К, будем искать среди значений (4, 5, 6), которые являются делителями массового числа 240. Выполнив процедуру деления цепочки кластеров на варианты из двух осколков, получим такие пары масс осколков:

- K=4 (60,180) (120,120)
- K=5 (48,192) (96,144)
- К=6 (40,200) (80,160) (120,120)

Сравнение значения масс осколков Pu240 на пиках масс-спектра деления [5] с вариантами оценки однозначно указывает на вариант (96,144), т.е. К=5. Попутно можно вычислить и основной состав продуктов деления Pu240.

Капельная модель даёт критерий делимости ядер, согласно которому способностью к делению обладают все ядра с А > 90. Тет-модель хорошо согласуется с этим условием, так как для конфигурации YY А=94. Связывая в статической модели деление с кластерной структурой ядер, можно сделать предположение о примерных границах значений масс, внутри которых к-во кластеров в ядрах не меняется (табл. 2). Внутри границ при постепенном росте А кластерный каркас сохраняется, а сами кластеры немного изменяются.

Таблица 2

Примерные области постоянства К и отношения масс осколков

Amin	Amax	K	A1: A2
90	120	2	1:1
120	165	3	1:2
165	210	4	1:1, 1:3
210	260	5	2:3, 1:4

На основе анализа масс-спектра осколков можно сделать заключение и о том, в какой последовательности происходит приращение нуклонов с ростом А.. Для наглядности возьмём ещё один важный элемент Pu239. Количественно он отличается от U235 на ядро Не(4,2). Наиболее вероятными представляются два способа присоединить 4 нуклона к структуре ҮҮҮҮҮ: 1- распределить по одному нуклону к четырём блокам Ү, разбиение нуклонов по блокам 4(48,19) + (47,18); 2 — присоединить 4 нуклона к одному из интерфейсов 6=, при этом возможны два варианта разбиения — 2(47,18) + 2(47,19) + (51,20) и 3(47,18) + (47,19) + +(51,21). Рассмотрим в качестве основных только пары осколков с соотношением масс 2:3. Вариант 1 даёт пары с к-вом протонов (57,37) и (56,38). Вариант 2 в дополнение к парам варианта 1 даёт пары (54,40), (55,39) и (58,36). Отсюда вывод — если на пиках масс-спектра осколков деления Pu239 присутствуют Kr, Y (иттрий), Zr на пике лёгких осколков и Xe, Cs, Ce на втором пике, то добавление нуклонов к последовательности блоков Ү..Ү происходит путём присоединения на интерфейс 6=. Это позволяет сравнить изменения при переходе от ядра с массой А (А>47) к ядру с массой А+1 как рост «кристалла»

в направлении главной оси 3-го порядка. А макроблок У можно рассматривать как устойчивую структурную единицу с характерными предельными размерами для конструкций из тетов.

В [6] приведен результат моделирования упаковки в ящик большого объёма слегка деформируемых тетраэдров. При сжатии происходит фазовый переход — упорядочение укладки путём формирования макроблоков и скачок плотности упаковки до 85% (по сравнению с 75% при случайной упаковке). В тет-ядрах, где объём ограничен их поверхностью, а неплотность обусловлена величиной двугранного угла, плотность упаковки на цепочках Ү..Ү превышает 90%.

Таблицу 2 можно использовать и для описания эволюции масс-спектра осколков при изменениях К. Для конкретности выберем значения К 4 и 5, а значения A от 188 до 235. При А=188 (барьер деления около 25 Мэв) должен быть один пик из-за деления 1:1. При переходе к ядрам с большими массовыми числами пик должен понижаться и расширяться, поскольку будет нарастать к-во пар осколков. При достижении А значения примерно 210–215 (когда сформирована такая часть 5-го блока, что его можно рассматривать как самостоятельный, а не как довесок к 4-му Y), начнёт обозначаться прогиб в середине масс-спектра, который постепенно перейдёт в кривую с двумя резкими пиками при приближении А к значению 235.

4. Построение изобара с произвольным значением А

Для тет-системы базовыми блоками, из которых строятся ядра со всеми значениями массы А, являются блоки из табл. 1. Всю совокупность изобаров можно представить как набор их комбинаций. Соединение в комбинации выполняется через интерфейсы. Типов интерфейсов семь: 2+, 2-, 5+, 5-, 6+, 6-, 6=, а также одиночная грань тета. При добавлении очередного блока в конфигурацию изменяется и набор интерфейсов. Это делает тет-систему достаточно гибкой — для любого изобара с массой А можно построить несколько конкурентных вариантов конструкций. А реализуется конструкции с наибольшей энергией связи, т.е. состоянии с самой глубокой коллективной ямой. Далее следует перечень некоторых особенных тет-ядер.

А=16, рис. 5, *а*, блок О, особенность — отсутствие тета в сердцевине конструкции, пример ядра — O(16,8).

A=20, рис. 5, δ , блок B, практически сферическая симметрия, т.е. отсутствие вращательных уровней, пример — F(20,9),

A=47, рис. 6, *a*, блок Y — основной кластер для построения средних и тяжёлых ядер в тет-системе, пример — Ti(47,22), A=57, рис. 8, *a*, конфигурация YG, близкое к минимальному отношение к-ва граней поверхности к к-ву связей, пример — Fe(57,26),

А=94, рис. 6, *б*, конфигурация ҮҮ, пример — Nb(94,41),

A=141, YYY, Pr(141,59); A=188, YYYY, Os(188,76); A=235, YYYYY, U(235,92).

Рис. 8. Ядра *a* – Fe57, *б* – Zn67 (конфигурация GYG)

4.1. Инварианты в тет-системе

Блок Y можно собрать разными способами. Это можно изобразить соотношением

$$G$$
 H
GFG = Y = SWSWS

т.е. если к трём из четырёх интерфейсов 6= блока F присоединить блоки G, то получится Y, который можно собрать и из других блоков. Одно из следствий поскольку F и O имеют одинаковую поверхность (и набор интерфейсов), можно собрать блок X

и тем самым образовать ряд 46, 92, 138, 184, 230. Рассмотрим Th(230,90). Поскольку число 90 делится на 5 без остатка, то все блоки X имеют одинаковое к-во протонов, поэтому у изотопа Th(230,90) на пиках масс-спектра деления будет в отличие от U235 только одна пара ядер: Xe(Z=54) и Kr(Z=36). Ряд XXXXX, XXXXY, XXXYY, XXYYY, XYYYY, YYYYY охватывает изобары от 230 до 235.

Блок Y (и X) допускает присоединение G к интерфейсам 6=. Конфигурация GYG интересна тем, что: 1 — по форме близка к сфере (рис. 8.6), т.е. к пределу компактности, 2 — образует новые интерфейсы 6=, которые при присоединении новых блоков G образовывали бы сферу большего диаметра и т.д. Но интерфейсы 6= на GYG из-за нарастания смещений на 3-й координационной сфере деформированы настолько, что фактически интерфейсами уже не являются.

Поскольку конфигурации Ү..Ү сильно несферичны, то наибольшей компактностью (т.е. максимумом отношения A/k, где k — к-во граней на поверхности конфигурации) обладают конфигурации от Y до GYG, т.е. ядра в диапазоне A=(47..67), а также сферический блок B (ядра F(20,9), Ne(20,10), Na(20,11)).

// Международный научный журнал // № 8, 2016

// Физико-математические науки //

Схематически последовательность наращивания А можно изобразить как уравнения для блоков, например:

YF + G + G + G -> YY

Аналогичные соотношения можно выписать и для перехода от А к А+1, т.е. на уровне отдельных тетов.

4.2. Масштабирование тета

Рассмотрим концентрическое наращивание структур ядер вокруг основного элемента тет-системы — тета. Первая координационная сфера, которую правильнее назвать первой координационной пирамидой, образуется добавлением тетов на все четыре грани центрального тета — получится блок R с интерфейсами 2-. Присоединяя к этим интерфейсам блоки D, приходим к блоку F с центральным тетом, или к блоку О без центрального тета. Блоки F и О можно считать второй координационной пирамидой. Эти блоки имеют по 4 интерфейса 6=. Дальнейшее блочное наращивание можно продолжить двумя способами. Первый — поставить заглушки G на интерфейсы 6=, получатся конфигурации

с А=(26..56) с промежутками. Последний — с А=56, т.е., например, Fe(56,26). Добавление блоков G приближает конфигурации к сферическим. Второй способ — достроить третью координационную пирамиду, т.е. собрать структуры

что соответствует ядрам с массой A от 32 до 85 (S, Cl... Br, Kr, Rb). Возможно и дальнейшее координационное наращивание через интерфейсы 6=. Пока ограничимся постановкой заглушек G. Получатся конфигурации

с A=(46..205). Одна из таких конфигураций O4F12G — изотоп свинца Pb(204,82).

Итак, третья координационная пирамида с заглушками заканчивается на ядрах свинца. Ядро Pb204 можно построить и в виде цепочки GXXXXG. Конфигурации O4F12G и G4XG — пример структурных изомеров. Изомерные двойники существуют у многих реальных ядер, возможны изомеры и в тет-системе. Изомеры отличают по значениям некоторых параметров, напр., периодам полураспада. Ниже для изомеров Pb204 приведены немного отличающиеся значения энергии связи. Итог — в тет-системе существует два направления наращивания массового числа ядер — цепочки и масштабированные пирамиды (иногда скруглённые блоками G).

Рассмотрим ещё один пример масштабирования, взяв в качестве исходного блок D. Используем расширенный формат описания соединения блоков:

<блок1>(<интерфейс1>,<интерфейс2>)<блок2> ->

-> <блок3>(<интерфейс3>) Первое масштабирование блока D D (2+,2-) 3T -> M (3(6+)) Далее возможны варианты, например M (6+,6-) 3H -> Y (2(6=))

ИЛИ

TBT (4(6+),6-) 4H -> TBT4H

Конфигурация ТВТ4Н — это симметричная «гантель» с А=74 (напр. Ge(74,32)), что видно из структурной формулы

Таким образом, можно говорить о двух семействах конфигураций — это семейство протия (концентрические «пирамиды») и семейство дейтерия (цепочки из X и Y и другие). Структуры, подобные координационным пирамидам, в математике называют фракталами.

Использованные выше «структурные» формулы это удобный, но не вполне точный аппарат для описания тет-конфигурпаций. Более точными, хотя и менее наглядными являются матрицы смежности (или связей) граней тетов. Основные свойства матрицы квадратная, размер равен к-ву тетов в конфигурации, симметричная и с пустой диагональю. Построение матрицы начинается с присвоения номеров тетам. Для примера приведём матрицу для блока S (рис. 3, *a*):

		*	•			
	1	2	3	4	5	
1		1			1	
2	1		1			
3		1		1		
4			1		1	
5	1			1		

Бескоординатное описание связей с помощью плоской матрицы содержит полную информацию для построения трёхмерной тет-конфигурации.

Как следует из изложенного, тетраэдр как модель элементарной ячейки ядра (или нуклон с четырьмя связями) интересен тем, что в сочетании с естественным требованием компактности ядер, привносит ограничения в конфигурацию ядер (в частности, правила сочетания интерфейсов), т.е. обладает формообразующей по отношению к ядрам функцией, чем отличается от более привычных моделей нуклонов — укладок шариков с количеством связей (контактных точек), равным 6 или 8.

5. Энергия связи

Данный пункт служит иллюстрацией возможностей дискретной тет-модели и не претендует на высокую точность расчётов из-за ряда упрощений.

Вывод зависимости энергии связи от А, Z и формы ядра повторяет капельный подход в рамках дискретной тет-модели, т.е. формула должна содержать слагаемые, учитывающие форму ядра (вклад объёмной и поверхностной энергии), электростатику, зеркальность и спаривание [3]. Формула энергии связи ядра записывается в виде

$$E = f1*Ed + f2*Ep + f3*Es - f4*Ee$$
 (2)
где f1 — к-во связей в ядре, Ed — энергия связи двух

нуклонов, f2 — сумма к-ва пар нейтронов и к-ва пар протонов, Ep — энергия спаривания одноимённых нуклонов,

f3 — параметр симметрии ядра, Es — удельная энергия симметрии,

f4 — кулоновский множитель ядра, Ее — средняя энергия отталкивания двух протонов.

Величины Ed, Ep, Es, Ee — постоянны для всех ядер, f1..f4 — функции параметров ядра. Будем считать сильные связи (n, n), (n, p), (p, p) энергетически равноправными. Для нахождения Ed, Ee, Ep и Es выберем четыре ядра с известной энергией связи и используя уравнение (2) составим четыре уравнения для четырёх неизвестных — Ed, Ee, Ep и Es. Вначале следует выразить f1, f2, f3 и f4 через параметры ядра. Функцию f1 будем оценивать как к-во смежных граней тетов в конкретной конфигурации ядра. Тогда полное к-во связей для некоторой конфигурации К равно

$(A^*4 - k)/2$,

где k — к-во граней, образующих поверхность конфигурации K (k всегда чётное, поэтому удобно ввести переменную q=k/2), 4 — к-во граней тета, 2 — к-во граней, образующих одну связь. Поэтому

$$f1 = 2A - q$$

Функцию f2 запишем в виде
 $f2 = Z \setminus 2 + (A-Z) \setminus 2$

где символ \setminus обозначает целую часть от деления (см. табл. 3)

Sugara dynamu fl

Таблица 3

Опачения Функции 12								
Z	N=A-Z	2*f2						
чёт	чёт	А						
чёт	нечет	A-1						
нечет	чёт	A-1						
нечет	нечет	A-2						

Выражение в последней колонке табл. 3 объясняет зависимость энергии связи от чётности значений N и Z. Функция f3 заимствуется из формулы Вайцзеккера [3]

$$f3 = A - (A-2Z)^2 / A = 4ZN/A$$

Порядок вычисления точных значений f4 приведен в Приложении. Кулоновская энергия ядра пропорциональна выражению

$$\sum_{i=1}^{Z} \sum_{j=i+1}^{Z} 1/R(i,j)$$
(3)

где R(i, j) — расстояние между i-ым и j-ым протонами (центрами тетов), т.е. нужно суммировать обратные расстояния «от каждого до всех остальных» протонов. Для упрощенной оценки значения кулоновской энергии воспользуемся функцией

$$f4 = Z(Z-1)/2R$$
,

где R- «средневзвешенное» расстояние между протонами в тет-ядре с параметрами A, Z, q

$R = (A^{(1/3)} + (q/2)^{(1/2)}) / 2$

Второе слагаемое учитывает несферичность. Для сферичных ядер значения слагаемых примерно равны и сумма совпадает со значением из ф-лы Вайцзеккера. Функции f1, f2, f3, f4 определены. В таблице 4 приведены данные расчёта удельной энергии связи ряда ядер по ф-ле (2). В предпоследней колонке — результат расчёта, в последней — справочные данные из [7]. Для определения значений «констант» Ed, Ee, Ep и Es были взяты параметры ядер (полные энергии связи) He4, B10, Fe56 и U235.

Формула Вайцзеккера описывает общую зависимость энергии связи от нуклонного состава ядер в предположении их сферичности и содержит пять «настроечных» констант с размерностью энергии и одну безразмерную, результатом является функция двух параметров A и Z.

Формула (2) в тет-модели содержит 4 «константы», результирующая функция зависит от трёх параметров А, Z, q. В зависимости от выбора четвёрки ядер для определения значений Ed, Ee, Ep и Es их величины существенно меняются вплоть до смены знака, что не очень сильно сказывается на результатах расчёта энергии связи (поясняющий числовой пример. 8*2 + 4*4 = 8*0.5 + 4*7). Из-за ряда упрощений точность расчёта получилась невысокая, но общая тенденция максимума удельной энергии в диапазоне А от 50 до 70 сохранена. В таблице содержатся данные по пяти реальным дважды магическим ядрам и по двум таким же островкам стабильности для сверхтяжёлых ядер (298,114) и (322,126). Можно отметить интересное совпадение — все дважды магические ядра имеют простую тет-формулу, т.е. компактную тет-структуру. Приведены также дан-

Таблица 4

Удельная энергия связи для некоторых ядер по ф-ле для тетов

Тет-кон -	Эле-	Α	Z	N	q	Связей	Пар	Симметр.	Электро	E/A	Справочно
фигурация	мент					f1	f2	f3	f4	Мэв	Мэв
Т	Т	3	1	2	4	2	1	2.67	0.00	_5.07	_2.83
Е	Не	4	2	2	5	3	2	_4,00	0.44	7.09	7.08
S	Не	5	2	3	5	5	2	4.80	0.43	6.99	5.46
S	Li	5	3	2	5	5	2	4.80	1.31	6.68	5.26
W	В	10	5	5	10	10	4	10.00	3.42	6.48	6.47
А	В	11	5	6	9	13	5	10.91	3.47	7.99	6.93
SW	Ν	15	7	8	10	20	7	14.93	6.92	8.54	7.70
Ο	Ο	16	8	8	14	18	8	16.00	8.48	7.99	7.98
F	F	17	9	8	12	22	8	16.94	11.34	8.11	7.54
F	Ο	17	8	9	12	22	8	16.94	8.73	8.35	7.75
GG	Ne	20	10	10	15	25	10	20.00	13.16	8.32	8.03
В	F	20	9	11	10	30	9	19.80	11.46	8.87	7.72
В	Na	20	11	9	10	30	9	19.80	17.90	8.38	7.23
SWSWS	Cl	35	17	18	15	55	17	34.97	37.43	8.88	8.14
WSWSW	Ca	40	20	20	20	60	20	40.00	48.54	8.57	8.29
Х	Sc	46	21	25	20	72	22	45.65	52.24	8.70	8.39
Υ	Ti	47	22	25	18	76	23	46.81	58.69	8.88	8.42
000	Ca	48	20	28	30	66	24	46.67	42.72	8.61	8.45
XG	Fe	56	26	30	22	90	28	55.71	77.42	8.80	8.79
YG	Со	57	27	30	20	94	28	56.84	85.18	8.69	8.50
GXG	Zn	66	30	36	24	108	33	65.46	99.34	8.76	8.53
GYG	Ga	67	31	36	22	112	33	66.63	107.93	8.65	8.71
XX	Zr	92	40	52	34	150	46	90.44	158.16	8.49	8.69
YY	Nb	94	41	53	30	158	46	92.47	169.64	8.43	8.65
XXX	La	138	57	81	48	228	68	133.83	284.30	8.10	8.38
YYY	Pr	141	59	82	42	240	70	137.25	311.38	8.11	8.36
XXXX	W	184	74	110	62	306	92	176.96	438.39	7.86	8.00
YYYY	Os	188	76	112	54	322	94	181.11	472.19	7.85	7.97
GYYYY	Au	198	79	119	56	340	98	189.92	502.23	7.78	7.91
O4F12G	Pb	204	82	122	62	346	102	196.16	530.12	7.70	7.88
GXXXXG	Pb	204	82	122	66	342	102	196.16	524.49	7.67	7.88
GYYYYG	Pb	208	82	126	58	358	104	198.69	533.02	7.84	7.87
XXXXX	Th	230	90	140	76	384	115	219.13	603.80	7.62	7.63
YYYYY	U	235	92	143	66	404	117	223.93	643.83	7.60	7.59
G4X2YG		298	114	184	90	506	149	281.56	902.27	7.25	
7X		322	126	196	104	540	161	306.78	1065.48	6.83	
10Y		470	184	286	126	814	235	447.86	2070.47	5.69	

ные для изотопов O16 и O17, изобаров (F17, O17) и (Ne20, F20), несколько пар изотонов, изомеров Pb204 (А и.Z одинаковые для обоих ядер, а q различны).

6. Макетирование структур

Элемент натурной модели ядра — это тетраэдр. Для ручной сборки конфигураций можно использовать разные варианты, например:

- пластилин и металлическая форма открытый двугранник-тетраэдр (рис. 9),
- пластиковые тетраэдры с отверстиями в центрах всех граней и стикеры для их соединения. Их можно изготовить на 3D-принтере.
- изготовить из жести развёртку тетраэдра правильный треугольник, согнуть в тетраэдр, намагнитить. Для полного атласа изобаров нужно с учётом изоме-ров около 50 тысяч тетов.

Для компьютерного моделирования пригодна система 3D-графики с открытой структурой данных, что позволило бы не только рисовать и удобно просматривать конфигурации, но и дополнять систему

// Фізико-математичні науки //

различными программными модулями синтеза конфигураций, расчёта их свойств (энергия связи, выявление слабосвязанных кластеров, дифракционные картины рассеяния и т.п.).

Рис. 9. Форма для изготовления тетов

7. Наблюдение тет-структур

Обычно заключение о структуре микрообъектов делают на основании проявления их свойств в разных экспериментах. Ситуация с ядрами может оказаться в этом отношении позитивным исключением из-за потенциальной возможности прямого визуального наблюдения тет-структур. Причина — подобие тет-моделей для ядер и элементов IV группы таблицы Менделеева в аморфном состоянии.

Разрешение современных растровых электронных микроскопов сравнимо с диаметром атома, а также обеспечивает контрастное изображение поверхности. Это позволяет непосредственно наблюдать кластеры на плёнках аморфных полупроводников. Поэтому удобно рассматривать указанные вещества как наглядную модель структуры ядер.

Атомы Si (или Ge) имеют 4 связи. Энергетически наиболее выгодной конфигурацией является кристалл с т.н. тетраэдрической симметрией — решётка типа алмаза кубическая гранецентрированная, где трансляционная симметрия в трёх измерениях возможна из-за наличия пустот разной формы между четырьмя тетраэдрами, образующими элементарную ячейку решётки. Доля пустот для разных типов решёток сравнима с половиной объёма ячейки.

Для перехода из исходно неупорядоченного в кристаллическое состояние нужны некоторые благоприятные условия — концентрация и подвижность атомов, которые характерны для пересыщенных растворов или расплавов. Если такие условия не созданы, то атомы вещества соединяются с ближайшими соседями по схеме, описанной для тет-модели, образуя одну из разновидностей аморфного состояния.

Чтобы избежать путаницы укажем, что термин тетраэдр для кристалла и для тет-модели имеет разный смысл. Для кристалла (ковалентные) связи находятся в вершинах тетраэдра, для аморфных веществ химические связи и для ядер сильные связи ассоциируются с гранями тетов.

Аморфные вещества характеризуются по определению наличием ближнего порядка (согласованность в расположении соседних частиц) и отсутствием дальнего порядка (трансляционной симметрии). Ближний порядок сохраняется в пределах 1-й координационной сферы и постепенно теряется при переходе к последующим, т.е. соблюдается на расстоянии, сравнимом с ребром тета. Как показано выше, в тет-модели возможна ограниченная трансляционная симметрия (а точнее, цикличность) в одном измерении (структуры XXXXX, YYYYY, SWSWSWS). Отсутствие дальнего порядка есть внутреннее свойство тет-модели (двугранный угол тета немного меньше 72°). Уже на 2-й координационной сфере щели между тетами достаточно велики, т.е. ядерные силы между некоторыми тетами не действуют (или химическая связь в аморфном веществе ослаблена). Это накладывает ограничения на форму ядер, в частности, более выгодными по энергии связи являются конфигурации, имеющие в сечении не более чем 2-3 тета. Пример подобной конфигурации — блок Ү.

Тет-модель можно рассматривать как дополнение к оболочечной модели [7] с целью конкретизировать характер симметрии и форму ядер. Например, рассматривать форму ядра как входящий в гамильтониан трёхмерный потенциал (полость) в задаче определения набора уровней энергии. Рассматривая ядро как резонатор дебройлевских волн нуклонов, можно выделить ядра наиболее простые и симметричные в тет-модели, т.е. удобные для поиска аналитических решений. Это ядра с массовыми числами 2, 4, 5, 10, 11, 16, 17, 20, 25, 35, 46, 47, 56, 84, 204.

Данная работа является эвристической попыткой исследовать свойства совокупности правильных тетраэдров применительно к структуре атомных ядер. Для полноты не хватает математического объяснения свойств системы с приблизительной симметрией, подобного теории квазикристаллов.

Приложение. Вычисление кулоновской энергии ядер

1. Для расчёта потребуются координаты вершин тетов в модели конкретного ядра. Получение массива координат существенно упрощается применением библиотеки блоков. Библиотечный метод применяется во многих системах проектирования, напр. [8]. Суть метода простая — выполняется детальное описание координат простых блоков, а конкретная конструкция описывается как совокупность координат размещения («привязки») блоков. При поворотах и сдвигах блока в пространстве изменение всех координат блока можно выполнить в технике углов Эйлера. Возможно иерархическое описание блоков, когда блок большего

// Международный научный журнал // № 8, 2016

объёма содержит ссылки на меньшие блоки. Библиотека простых блоков невелика (15 единиц, см. табл. 1) и едина для всех ядер. Описание координат вершин тетов следует дополнить признаком s того, принадлежит (s=1) или нет (s=0) данная вершина хотя бы одной из граней, образующей поверхность модели ядра. Удалив из массива координат вершин тетов все вершины с s=0, получим цифровое координатное описание поверхности модели конкретного ядра.

2. Для определения координат протонов воспользуемся свойством равномерного распределения протонов по объёму ядра.. Это условие можно переформулировать в локальное условие примерного равенства расстояний от каждого из протонов до соседних протонов. Последнее условие можно выполнить с помощью простого алгоритма:

- зафиксировать форму конкретного ядра в некоторой системе координат (п. 1),
- виртуально заполнить весь объём ядра кубиками в количестве Z штук, объём кубика в A/Z раз больше объёма тета,
- зафиксировать координаты центров кубиков, определить расстояния R(i, j) между всеми парами кубиков, выполнить для них подсчёт выражения (3).

Полученное размещение протонов в конкретном ядре можно дополнительно проверить расчётом внешнего квадрупольного момента и сравнением с измеренным значением

Литература

1. Рейнуотер Дж. Как возникла модель сфероидальных ядер // УФН — 1976. — т. 120, вып.4, — с. 529–541

2. Nasser G. A. Body-Centred-Cubic (BCC) Lattice Model of Nuclear Structure // vixra.org/abs/1312.0184

3. Сивухин Д. В. Курс общей физики т. V ч. 2 Ядерная физика / М., Физматлит, - 2006, - 415 с.

4. Немец О. Ф.и др. Нуклонные ассоциации в атомных ядрах и ядерные реакции многонуклонных передач / К., Наукова думка, — 1988.

5. Бекман И. Н. Ядерная физика, Курс лекций / М. МГУ, - 2010. - 511 с.

6. Haji-Albari A. & al., Disordered, quasicristalline and cristalline phases of densely packed tetrahedral // Nature, −2009.12.10, − № 462, − pp. 773–777.

7. Широков Ю. М., Юдин Н. П. Ядерная физика, / М., Наука, -1980. - 727 с.

8. Рубцов В.П, Захаров В.П, Жижко В.А. Автоматизация проектирования больших интегральных схем / К. Техніка, —1980. — 232 с.

Примечание. Все рисунки, таблицы и формулы — авторские.