Reuven Tint

Number Theorist, Israel

USING THE METHOD OF INFINITE RISE TO OBTAIN CERTAIN TYPES OF SOLUTIONS OF THREE-TERM EQUATION TH (ELEMENTARY ASPECT)

ИСПОЛЬЗОВАНИЕ МЕТОДА БЕСКОНЕЧНОГО ПОДЪЕМА ДЛЯ ПОЛУЧЕНИЯ НЕКОТОРЫХ ТИПОВ РЕШЕНИЙ ТРЕХЧЛЕННЫХ УРАВНЕНИЙ (ЭЛЕМЕНТАРНЫЙ АСПЕКТ)

Annotation. An infinitely lifting method for making certain types of three-term equations, which is completely refuted by the ABC conjecture.

Key words: three-term equation, the method of infinite growth, elementary aspect.

Аннотация. Использован метод бесконечного подъема для получения некоторых типов решений трехчленных уравнений, которыми полностью опровергается авс-гипотеза.

Ключевые слова: трехчленные уравнения, метод, бесконечный подъем, элементарный аспект.

§ 1

Theorem. "For all three are relatively prime positive integers a, b, c, such that $(a_0 = a^x) + (b_0 = b^y) = (c_0 = c^z)$, for x > 0, y > 0 are arbitrary real positive num-

bers, $z = \frac{\ln(a^x + b^y)}{\ln c}$, runs in an infinite number of cases

$$c_{\infty}^{2} > \text{rad}(a_{\infty}b_{\infty} c_{0})$$
". (1)

Evidence

1.1. We have (1) for positive numbers a_0 , b_0 , c_0 the equation $a_0 + b_0 = c_0$ (2).

From (2) $(\sqrt{a_0})^2 + (\sqrt{b_0})^2 = (\sqrt{c_0})^2$ (3). Let us assume (3)

1)
$$m_1 = \sqrt{a_0}$$
, $n_1 = \sqrt{b_0}$,

$$a_{\scriptscriptstyle 1} = m_{\scriptscriptstyle 1}^2 - n_{\scriptscriptstyle 1}^2 = \left| a_{\scriptscriptstyle 0} - b_{\scriptscriptstyle 0} \right|, \ b_{\scriptscriptstyle 1} = 2 \, m_{\scriptscriptstyle 1} n_{\scriptscriptstyle 1} = 2^{\alpha=1}. \left| \sqrt{a_{\scriptscriptstyle 0} b_{\scriptscriptstyle 0}} \right|,$$

$$c_1 = m_1^2 + n_1^2 = (a_0 + b_0) = c_0, c_1^2 = c_0^{2^{\alpha = 1}}.$$

2)
$$m_2 = a_1 = |a_0 - b_0|$$
, $n_2 = b_1 = 2|\sqrt{a_0 b_0}|$, $a_2 = m_2^2 - n_2^2 = m_2^2 - m_2^2 - m_2^2 = m_2^2 - m_2^2 - m_2^2 - m_2^2 = m_2^2 - m_2$

$$=(a_0-b_0)^2-(2\sqrt{a_0b_0})^2$$

$$b_2 = 2m_2n_2 = 2^2 |(a_0 - b_0)| |\sqrt{a_0b_0}|,$$

$$c_2 = m_2^2 + n_2^2 = c_0^2, \ c_2^2 = c_0^{2^{\omega = 2}}.$$

.....

$$\infty$$
) $b_{\infty} = (b_{\infty} : 2^{\infty}) \cdot 2^{\infty}, c_{\infty}^2 = c_0^{2^{\infty}}, \infty = 1, 2, 3, \dots, 2$

1.2. Statement. "Each equation (2) is the source for in countless cases of "exceptional" triples such that $c_{\infty}^2 = c_0^{2^{\infty}} > rad(a_{\infty} b_{\infty} c_0)$, starting with some " ∞ ", If only $m_{\infty} = a_{\infty-1}, n_{\infty} = b_{\infty-1}$, and so recursively to infinity.

Evidence

1.2.1. We have the identity: $c^6-a^6-b^6\equiv 3a^2b^2c^2$, if $a^2+b^2=c^2; a,b,c-relatively\ prime\ integers$. Definitions of $3\ a^2b^2c^2< c^6$ in $c^2>|ab|$.

1.2.2. Always at some point in the infinite series $2^1, 2^2, 2^3, \ldots, 2^{\infty}$... There " ∞ " such, that in " b_{∞} " $factor 2^{\infty} > c_0$ (endless lifting method). Hence, $c_{\infty}^2 c_0^{2^{\infty}} > rad(a_{\infty}b_{\infty}c_0)$.

1.23. Thereby completely proved Theorem (1). Examples:

1) For
$$x=y=z=1$$
 $3+2=5$ $(a^{\frac{1}{2}})^2+(b^{\frac{1}{2}})^2=(c^{\frac{1}{2}})^2$. Take $m_1=3^{\frac{1}{2}},\ n_1=2^{\frac{1}{2}}$. Than, $a_1=m_1^2-n_1^2=3-2=1,\ b_1=2m_1\,n_1=2^{\infty=1}.6^{\frac{1}{2}},$ $c_1=m_1^2+n_1^2=5,\ c_1^2=c^{2^{\infty=1}}=5^{2^{\infty=1}}<\mathrm{rad}(2.3.5)=30.$
2) $m_2=a_1=1$, $n_2=b_1=2.6^{\frac{1}{2}},\ a_2=23,\ b_2=2^{2^{\infty=2}}.6^{\frac{1}{2}},$ $c_2=5^2,\ c_2^2=c^{2^{\infty=2}}=5^4=625<\mathrm{rad}(23.2.3.5)=690.$
3) $m_3=a_2=23,\ n_3=b_2=2^2.6^{\frac{1}{2}},$ $a_3=433,\ b_3=2^{\infty=3}.23.6^{\frac{1}{2}},\ c_3=5^{2^{\infty=3}},$ $c_3^2=c^{\infty=3}=5^8=390625>$

> rad(433.2.3.5) = 12990, etc. recurrently to infinity.

Option x=y=z=2 published. [1]

§ 2

Final statement of the theorem (1): "For all three are relatively prime positive integers a, b, c, such that $a^x + b^y = c^z$, where x > 0, y > 0 – arbitrary real positive positive real po

tive numbers, $z=\frac{\ln(a^x+b^y)}{\ln c}$, beginning with a " ∞ ", is performed in an infinite number of cases of inequality $c_{_{\alpha}}^2=c^{2^{\alpha}}>rad(a_{_{\alpha}}b_{_{\alpha}}c)$, if only $m_{_{\alpha}}=a_{_{\alpha-1}}$, $n_{_{\alpha}}=b_{_{\alpha-1}}$, used in equation $a_{_{\alpha}}^2+b_{_{\alpha}}^2=c_{_{\alpha}}^2$ by $a_{_{\alpha}}=a_{_{\alpha-1}}^2-b_{_{\alpha-1}}^2$, $b_{_{\alpha}}=2a_{_{\alpha-1}}b_{_{\alpha-1}}$, $c_{_{\alpha}}=a_{_{\alpha-1}}^2+b_{_{\alpha-1}}^2$ (endless lifting method)". (4)

§§ 1 foregoing, and 2 completely refuted by the ABC conjecture.

Literature

1. Reuven Tint, "On some embodiments", Pythagorean "decisions and other higher order equations" (elementary aspect), 2017. www.ferm-tint.blogspot.co.il