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SAMPLING RATE INDEPENDENT FILTRATION APPROACH  
FOR AUTOMATIC ECG DELINEATION

Summary. In this paper different types of ECG automatic delineation approaches were overviewed. A combination of these 
approaches was used to create sampling rate automatically adaptive filtration approach for ECG delineation that is capable of 
distinguishing different morphologies of T and P waves and QRS complexes.
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I. Introduction

The healthcare industry is now on the cusp of disrup‑
tive changes and the new technologies are being de‑

veloped will truly alter the way how the medical care is 
provided to the patients. The medicine in the 21st centu‑
ry will be functioning in the framework of a fundamental‑
ly new P3 paradigm: predictive, preventive and personal‑
ized medicine (PPPM). This means that the healthcare 
will become proactive but not reactive and medical sen‑
sors become ubiquitous, the streams of bio-data available 
to clinicians will completely overwhelm their ability to 
understand this amount of information and react in real 
time. To deal with this “ocean of bio-signals” (Big Data), 
we need to develop fast and reliable automatic signal pro‑
cessing algorithms that can adapt to the peculiarities of 
individual person. [1]

Nowadays the cardio vascular diseases are the major 
cause of death and because of that more and more busi‑
nesses every year create smart-garments that measure 
electrocardiogram (ECG) in daily life. These garments 
require ECG automatic real-time analysis and heart 
pathologies detection software.

So, we may state the importance of automatic ECG sig‑
nal processing and analysis tools development. These tools 
contain several stages of information processing like raw 
analog signal noise reduction, digitized signal filtering, dig‑
itized ECG delineation for marking of P, T waves and QRS 
complexes (heartbeats), time- and amplitude- and frequen‑

cy-based feature retrieval, machine-learning or rule based 
approaches for pathology detection and prediction. [2]

The paper is organized as follows: in Section II, we 
focus on the overview of the ECG automatic delineation 
algorithms. The usage of continuous wavelet transform 
(CWT) filtration with automated adaptation for differ‑
ent sampling rates is described in Section III instead of 
the use of the stationary wavelet transform (SWT) for 
the input ECG signal delineation. The obtained results 
of our approach and comparison with SWT method are 
discussed in Section IV. Finally, the conclusions are pre‑
sented in Section V.

II. Delineation algorithms overview
all delineation algorithms can be divided into two ma‑

jor groups: those that detect only QRS complexes peaks 
and wave delineation algorithms that find all peaks in‑
cluding full marking of P and T waves.

One the most famous examples from the first group 
is Pan-Tompkins approach [3]. It is used to find R-peak 
position on the raw ECG signal by calculating adaptive 
thresholds.

We consider the second type of algorithms, where 
determination of P- and T-waves is performed after the 
determination of the location of QRS complexes. We can 
name Chesnokov [4] and Laguna [5] approaches as the 
great examples of such algorithms. But even their meth‑
ods are not ideal.
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Chesnokov ECG delineator uses CWT that performs 
the filtration of digitized ECG signal equally good for giv‑
en wavelet analyzing frequencies regardless of the ECG 
sampling rate.

One of the drawbacks of the approach is that the 
proposed architecture cannot automatically determine 
whether the T-wave is biphasic. This parameter can be 
optionally set by the user before starting the delineator, 
but it requires a prior knowledge from the user about the 
analyzed ECG. Also this approach cannot differentiate 
between ascending and descending T-waves.

Laguna delineator approach allows the annotation of 
ECG waves for any configuration of P- and T- waves and 
QRS-complexes. But the main drawback is that filters 
used in SWT (algorithme à trous [5]) need to be indi‑
vidually tuned for ECG signals recorded with different 
sampling rates.

Our goal is to combine these two approaches to create 
sampling rate independent filtration approach for auto‑
matic ECG delineation that is capable of recognizing bi‑
phasic, ascending and descending T-waves.

III. Methods description
The ECG signal consists of different parts: complex‑

es (heartbeats ranges) and waves (like P- and T-waves). 
Physicians use them to determine heart pathologies. The 
waves contain various spectral components which appear 
at certain moments of time that can be automatically ana‑
lyzed. To analyze these components in the time-frequen‑
cy representation special tools and approaches are used.

One well-known approach is short time Fourier trans‑
form (STFT) [6]. The main idea is to apply Fourier trans‑
form to parts of the signal (called windows) where the 
signal appears to be stationary. But the biggest challenge 
for this approach is to find optimal window width. To 
overcome this problem the wavelet transform (WT) ap‑
proach is used in recent years. This approach implements 
the decomposition of non-stationary signal on the basis 
obtained by compression and displacement of a function 
(prototype wavelet). According to [7] a good selection of 
parent wavelet will allow to obtain a satisfactory resolu‑
tion for both time and frequency domains.

Formally continuous wavelet transform can be repre‑
sented as a function of two variables:

1
( , ) ( ) ( )xT a x t t dt
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τ ψ τ
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∗

−∞

= −∫ ,                 (1)

where a  is a scale, ( )tψ   — ​prototype wavelet, ( )x t  is 
the signal. It can be considered as inner product in 2 ( )L R  
(space of square-integrable functions, defined on the 
real axis) and as a mutual correlation of the signal and 
the wavelet. The larger scale — ​the lower frequency f is 
extracted by the CWT, f~1/a. Parameter τ   — ​offset of 

the wavelet. The asterisk defines a complex conjugation 
of the wavelet.

Equation (1) could give the impression that an exact 
value of the signal frequency can be extracted at a certain 
moment of time. However, taking into account a broad 
interpretation of Heisenberg uncertainty principle, in 
general case this conclusion is not true. From this princi‑
ple the fact follows — ​it is impossible to determine which 
harmonic signal components are present in a fixed time, 
you can only get an idea of a certain frequency range at a 
certain time interval.

If prototype wavelet ( )tψ  is the derivative of some 
smoothing function ( )tθ  then CWT of signal ( )x t  at 
scale a is [8]:
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where ( ) (1/ ) ( / )a t a t aθ θ=  is the scaled version of the 
smoothing function. The CWT at fixed scale a is pro‑
portional to the derivative of the filtered signal with a 
smoothing function ( )a tθ . Zero-crossings of the WT cor‑
respond to the local maxima or minima of the smoothed 
signal at different scales, and the maximum absolute val‑
ues of the wavelet transform are associated with max‑
imum slopes in the filtered signal. A quadratic spline 
wavelet which is a derivative of a smoothing function is 
used in this work.

IV. Dependency between frequency,  
sampling rate and scale

fixed scale CWT extracts certain interval of frequen‑
cy components at the fixed sampling rate. The principal 
frequency f at a fixed scale a analyzed by CWT is propor‑
tional to the sampling rate sr. These values are bounded 
by the following equation:

/c rf f s a= ⋅                                   (3)
To obtain the equality, we need to find a constant 

value fc. For a certain wavelet at fixed scale a this con‑
stant equals to the frequency, where Fourier spectrum 
of the wavelet reaches its maximum. We established 
that fc = 0.2685 for quadratic spline wavelet:

2

2

2

2

0, 0

2 , 1

( ) 6 16 8, 2 ,

6 32 40, 3

2 16 32, 4

4

0

1

2

3

x x

x x x

x x x x x

x x x x

x x x x

ψ

<
 <
= − + − <
 − + <
− + − <

∧ ≥
≥ ∧

≥ ∧
≥ ∧
≥ ∧

           (4)

and fc = 0.16 for derivative of a Gaussian smooth function.

2 /2( ) .xx xeψ −= −                                (5)
The scale a and the offset τ  of the wavelet can be dis‑

cretized. This allows us to use the main idea of discrete 
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wavelet transform (DWT)  — ​decomposition of the 

2( ) ( )y t L R∈  in approximating and detailing parts (2 j Z∈  
represents the scale factor):

1 , , , ,( ) ( ) ( )j j k j k j k j k
k Z k Z
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= +∑ ∑ ,            (6)

where , ( ) 2 (2 )j j
j k t t kϕ ϕ= −  — ​is the scale function;

            , ( ) 2 (2 )j j
j k t t kψ ψ= −  — ​wavelet function.

The DWT can be implemented by passing the discrete 
time signal through a high pass and a low pass filters. The 
original signal can be obtained through the reconstruc‑
tion filter bank.

The authors in [5] have used the analysis filter bank 
based on quadratic spline wavelet (4) in SWT:
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The equivalent frequency response for the filters in 
SWT for k-th scale is
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where ( )jwH e , ( )jwG e are the frequency responses of fil‑
ters (8)
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The filter bank (7) was used in [5] with the sampling 
frequency equal to 250 Hz. For the adaptation to other 
sampling rates, the authors in [5] adequately resample 
the equivalent filter impulse responses at 250 Hz to oth‑
er sampling rate values. But this procedure is time-con‑
suming and can’t be done automatically for all sampling 
rates.

Main SWT scales in [5] were 21, 22, 23, 24, 25 at 250 Hz 
sampling rate. We should get values of the fixed frequen‑
cies, which analyzed by quadratic spline wavelet on those 
scales at 250 Hz sampling rate. After that we will general‑
ize them into other sampling rates.

Let’s define frequencies which are mainly analyzed 
by SWT filters (7) at scales 21–25. Each of these frequen‑
cies corresponds to the point, where the maximum of the 
SWT frequency response (8) is achieved (Fig. 1). After 
that we put the found frequency value to the Table 1. The 
scale a can be defined as a function of sampling rate sr 

from (3):
( ) /r r ca s s f f= ⋅ .                           (10)

By this way we obtain an adaptation for the scale for 
any sampling rate at fixed frequency f mainly analyzed by 
the wavelet.

Table 1
Obtained Frequencies for Given Scales

Scale, k Frequency f, Hz

21 125

22 36.90

23 17.17

24 8.43

25 4.21

Proposal. We propose to use CWT with recalculation 
of the scale factor according to (10) at fixed frequencies 
from Table 1 instead of the use SWT which could not be 
automatically adjusted to different sampling rates.

Let’s compare the CWT frequency response and the 
frequencies responses from SWT filters (8). For this pur‑
pose we compute Fourier spectrum of the wavelet (4) 
assuming that the wavelet’s scale was recalculated in ac‑
cordance with (10). The frequency responses of the wave‑
let (4) and filters (8) at k-th scale are denoted respective‑
ly as ( )kQ f  and ( )k fψ  (Fig. 1).

The Figure 2 presents the Chebyshew error of pro‑
cessed ECG signals in time domain that were normalized. 
As for the scale 21, we also have a good approximation at 
sr > 250 Hz (see Fig. 2 below).

It can be observed that the frequency responses of the 
quadratic spline wavelet with scales recalculated by (10) 
constitute precise approximation of the original filters up 
to a frequency of 125 Hz.

V. Results
The SWT and CWT methods were applied to ECG 

signals with 250 Hz sampling rate. Tests were performed 
on sell100.dat file from QTDB [9]. We denote signals 
obtained at a fixed scale 2k by the SWT and CWT (for 
CWT the scale and corresponding frequency are taken 
from Table 1) as Qk[n] and Tk[n] respectively. The CWT 
and SWT methods were compared using of Chebyshev 
error:

1,
max | [ ] [ ] | .k k k

i N
e Q i T i

=
= −                        (11)

But before calculating errors in (11), the signals fil‑
tered by CWT and SWT must be normalized in the range 
of [–1, 1]. For signal x[n]:

[ ] min( )
[ ] 2 1, 1..

(max( ) min( ))
x i x

x i i N
x x
−

= ⋅ − =
−

        (12)

The results of comparison can be observed in Table 2 
and Figure 2.

According to Table 2, CWT deviates from SWT at 
scale 21. As we can see from the Fig. 2, the most signifi‑
cant errors are present at spikes of the CWT, but in gen‑
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Fig 1. Comparison of frequency responses for SWT and CWT based filtration at different scales.

Fig. 2. Wavelet transforms and their error at scale 21, 23, 25.

eral, approximation could be interpreted as satisfactory 
for 125 Hz and 250 Hz sampling rates.

For the third scale 23 and the fifth 25 the obtained ap‑
proximation is better (Fig. 2). The errors on spikes are 
decreasing at bigger scales. At the fifth 25 scale we have 
almost perfect approximation.

Scales 21, 22, 23, 24 are relevant for calculating the 
thresholds in [5] that define the existence of QRS complex.

Despite of obtained deviations between CWT and 
SWT at the QRS complexes locations at scales 21 and 
22 these errors are irrelevant for finding positive maxi‑
mum and negative minimum pairs (so  called maximum 
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modulus lines [5]) on the CWT and SWT graphs (Fig. 2) 
because maximum modulus lines and (2) guarantees zero 
crossing of WT with OX axis at local maxima or minima 
on the ECG signal.

Table 2
Chebyshev errors at different scales

Scale, k Error

21 0.50

22 0.35

23 0.27

24 0.16

25 0.086

Scales 24 and 25 are used for P, T waves delineation. As 
for these scales, we obtained a good approximation. More 
significant Chebyshev error appears at QRS complex lo‑
cation, which is not involved in P and T wave delineation. 

In this case, there is no need to change the delineation 
thresholds in Laguna algorithm.

VI. Conclusion
In this paper the approach for signal filtering in the 

ECG automatic delineation problem was researched.
A combination of Chesnokov and Laguna approaches 

was used to create sampling rate independent filtration 
algorithm for automatic ECG delineation that is capable 
of distinguishing different morphologies of T and P waves 
and QRS complexes.

The algorithm accuracy was investigated for different 
wavelet scales and despite of relatively valuable Cheby‑
shev error between CWT and SWT it had no significant 
influence on the ECG delineation precision.

It was shown that continuous wavelets transform with 
automatic adaptation for different sampling rates can be 
used instead of stationary wavelet transform for the de‑
lineation problem.

References

1. S. Nikolaiev, Y. Tymoshenko, “The Reinvention of the Cardiovascular Diseases Prevention and Prediction Due to Ubiquitous 

Convergence of Mobile Apps and Machine Learning”, Proc. of the 2nd Int. Sci. and Pr. Conf. ITIB2015, Oct 7–9, 2015, pp. 23–26.

2. H. O. Chereda, S. S. Nikolaiev. Automatic annotation of digitized ECG signals with wavelets, Proc. of the17-th International 

conference SAIT‑2015, June 22–25, 2015, p. 27.

3. J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm”, IEEE Trans. Biomed. Eng., vol. BME‑32, pp. 230–236, 

Mar. 1985.

4. Y. Chesnokov, D. Nerukh, R. Glen, “Individually Adaptable Automatic QT Detector,” Computers in Cardiology., vol.4, pp. 

337–341, 2006.

5. P. Laguna, J. Martinez, R. Almeida, “A wavelet-based ecg delineator: evaluation on standard databases”, IEEE Trans. on 

Biomed Engineering., vol. 51 (4), pp. 570–581, Apr. 2004.

6. B. Allen and L. Rabiner. A unified approach to short-time Fourier analysis and synthesis. Proc. IEEE, 65(11):1558–1564, 

Nov. 1977.

7. M. Vetterli, J. Kovacevic. Wavelets and Subband Coding / Vetterli M., Kovacevic J. Prentice Hall, New Jersey, p.487, 1995.

8. S. Mallat and S. Zhong, “Characterization of signals from multiscale edge,” IEEE Trans. Pattern Anal. Machine Intell., vol. 

14, pp. 710–732, July 1992.

9. The research resource of complex physiologic signals. Retrieved from: http://www.physionet.org


