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Principles of the organization of grid computing in corporate computer networks are investigated in article.
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Currently, there is a mismatch in the growth
of computer processing power, on the one
hand, and the spread of networks and their capac-
ity, on the other.

This permits separate independent research-
ers to use distributed computing systems based on
common local and corporate computer networks.
Organization of computations in such networks has
some fundamental differences from similar prob-
lems for wide-area networks (GRID systems). The
differences lie primarily in the following points:

- compilation of an optimal match of individ-
ual computing fragments to accessible computers
(computing elements);

- improvement of the reliability of computa-
tions;

-+ control of the load on individual computers.

Principles of organization of distributed com-
puting for such networks have not been developed
sufficiently as of the present.

The presence of these factors makes the task of
developing new charts of organization and man-
agement of distributed computing that are tailored
to these computer networks particularly urgent.

The object of research is the environment of
organization of distributed computing in computer
networks.

Computer networks that are considered in this
case have a number of features:

- corporate and local area networks are com-
posed of a relatively small number of computers
(up to several hundred) that are connected into
local networks;

- local networks are often removed from each
other geographically and are connected via the In-
ternet;

- computers that are included into such a net-
work may substantially differ in terms of hard-
ware specifications, physical accessibility, type and
reliability of network connection, and usage modes;

computers are inalienable, ie. they are not
passed on for solution of computation-intense op-
erations completely but they can run user tasks
with a higher priority.

The goal in this case is to minimize the time
required to solve computation-intense operations
by improving the mechanism for distribution of
individual fragments of (sub)tasks within a com-
puter network.

To achieve this goal, it is necessary to solve the
following tasks:
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- study of peculiarities of computers and com-
munications in target networks;

- analysis of the features of organization of dis-
tributed computing in such networks;

- development of a mathematical model of the
process of distributed computing, which takes into
account the features of the runtime environment
for computations and solved tasks;

- development and implementation of a simu-
lation model of a process of distributed computing
in the form of a program;

- synthesis of an algorithm for distribution of
tasks with the use of a mathematical model,

-+ study of the effectiveness of the synthesized
algorithms with the use of software implementa-
tion of a simulation model;

- validation of algorithms with the use of prac-
tical tasks.

The algorithm is focused on large-volume com-
puting tasks, which are broken down into sub-
tasks, with the minimum computation time start-
ing at an hour or more of computer time. For tasks
that can be divided into less demanding subtasks
(owing to the increase in their quantity), the issues
of the optimal distribution usually do not emerge
because of negligible loss of time at the loss of
results of solutions because of failure of a comput-
er with exception, naturally, of a computer that
stores the results of computations for all the sub-
tasks of the task to be solved at the time.

Description of the Distributed Computing Or-
ganization System

The core of the system under study is the cli-
ent-server architecture [5], which is characterized
by the presence of a server computer that is kept
in the idle state while awaiting queries from client
computers. Upon receipt of such a query, the serv-
er processes it and sends the result to the client.

The model of interaction of processes in the sys-
tem is as follows: a control station — workstations
[5]. This system diagram features a special station (a
control station) that has a set of subtasks (a portfo-
lio). The control station distributes subtasks among
computing elements (workstations) and collects the
results. This is a variant of the client-server dia-
gram in which workstations act as computing serv-
ers and the control station is the client.

As a software solution, the system includes the
following components:

- coordinator routine: a program that runs on
the server. This program is responsible for regis-
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tration of computing elements and their allocation
to address individual tasks in accordance with the
existing policy of the coordinator routine;

+ execution manager: a program that runs on
any computer within the network. The execution
manager corresponds to a single task being solved
and is responsible for organizing the process of
computation by: creating subtasks, sending sub-
tasks to the computer station, and saving and an-
alyzing the results of computations; stations are
dynamically allocated to the execution manager by
the coordinator;

- agent task: a program that runs on comput-
ing elements. It performs three tasks:

— collection of statistics on the functioning of
the computing element;

— registration of connection of a computing ele-
ment to the network with the coordinator routine;

— receipt of subtask data from the execution
manager, implementation of actual computations
that are needed to solve subtasks, and sending the
results back to the execution manager.

Any task that is solved in the system must sup-
port partitioning into subtasks, which consist of a
software module, which runs the required com-
putational algorithm, and input data for the al-
gorithm. Subtasks are numerically characterized
by resource intensity, which refers to the amount
of computation in certain conventional elementary
operations to be performed by a computing ele-
ment for its solution. More details on this parame-
ter are provided below.

This work studies aspects of interaction be-
tween the execution manager and computing ele-
ments. Accordingly, the selection of a new CE by
the coordinator routine for the solution of the cur-
rent task can be viewed as connection of the CE;
and removing the CE from the task, as a failure.

Let us consider the process of generation and
distribution of subtasks in more detail.

At any given time, a queue of computational sub-
tasks and a set of available processing elements exist.

Subtasks are divided into three categories ac-
cording to the type of event that caused this sub-
task to be generated:

- starting (initiation of the computation process);

- generated (completion of a computation sub-
task);

- repeated (failure of a computing element).

Starting subtasks are subtasks that are queued
at the time of the initial start of the computation, ie.
they correspond to the initial breaking of the task.

Generated subtasks are based on the analysis of
already completed subtasks (for example, in case
of insufficient accuracy of the obtained results or
in case of non-compliance with conditions for com-
putation completion).

Repeated subtasks are subtasks that have al-
ready been transmitted to computing elements but
have not been completed for some reason. Reasons
for cancelation may be either explicit (with a mes-
sage on the termination of the computation as a
result of software failure) or indirect (with loss of
communication with an element for a long period
of time).

In general, it is impossible to predict the num-
ber of subtasks that are simultaneously queued as
a result of occurrence of an event of the first or

the second type. Ideally, the flow of repeated sub-
tasks has a zero intensity.

The stream of generated subtasks is associ-
ated with the flow of serviced subtasks with a
certain dependence, which is determined by the
nature of the computational algorithm, and can
also have a zero intensity. At the same time, it
is necessary to take into account that generated
subtasks can be more demanding than previous
ones due to, for example, the need to improve
the accuracy of computations for a sustainable
solution. In other words, the time required for
the solution of generated subtasks by the same
workstation may increase progressively as the
subtask is solved.

Absence of subtasks from the queue means
completion of the computation process provided
that all the subtasks that have been assigned to
elements have been completed.

A subtask can be deleted from the queue as a
result of one of two events:

- assignment of the subtask to a computing el-
ement (transmission to service);

- abortive termination of computations.

All the currently available computing elements
form service equipment (SE) or service channels.
The number of elements may vary as a result of
the following events:

Quantity expansion:

a new element has been connected to the
computer network (this case includes elements
that were occupied by user tasks);

+ the computing element has finished process-
ing the assigned subtask (either the subtask has
been completed or a processing failure has oc-
curred) and is ready to accept a new subtask;

Quantity reduction:

- assignment of a task to the computing element;

- occurrence of the period of unavailability of
the computing element (disconnection of the ele-
ment from the network or receipt of a resource-in-
tensive user subtask).

That is, SE can be in one of three states:

- free;

- application processing;

- failure.

The general system diagram is shown in Figure 1.
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Fig. 1. System Diagram

It is necessary to create assignments of sub-
tasks to computing elements so as to minimize the
estimated computation time.
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To solve this task, we suggest introducing the
following characteristics of computing elements:

- computational power;

+ aggressiveness;

- reliability.

Computational power is a numerical assessment
of performance of a computing element, which is
calculated as the inverse ratio of the time required
to perform a set of computing tests to the time
that is required to perform the given set of tests
with the use of a reference machine.

Aggressiveness is a characteristic that depends
on the time and that is based on statistical data
that are collected in the computing element. This
indicator starts to increase before the time seg-
ments wherein the resources of the computing el-
ement will not be used by the owner for a long
time (for example, the computer is left on while
the owner is at work) and falls to zero before the
time segments wherein the computing resources
are completely occupied or are not available at all
(the computer is turned off at night). Moreover,
the aggressiveness value is integral with respect
to the amount of free resources in the subsequent
period of time, ie. it will be the maximum before
the long period of inactivity.

Because aggressiveness begins to increase be-
fore the actual release of resources occurs, the co-
ordinator will be able to implement a more «vision-
ary» distribution of tasks without having detailed
statistical data about specific elements but only in
possession of overall estimates.

Mathematically, aggressiveness is defined as
follows:

T(l— L(t))dt
1 tz _t1 ,

a=

where:

a is the numerical value of the aggressiveness;

t, is the planned subtask solution start time;

t, is the estimated subtask solution end time;

L(t) is the load of the user with tasks at a mo-
ment in time t.

The t, value is calculated on the basis of the
anticipated resource intensity of the subtask, the
load of the computing element, and its power:

t.

fP-(lf L{t)dt=C,

where:

P is the numerical value of the power of the
computing element;

C is the computing resource intensity of the
subtask.

The t, value is determined iteratively by incre-
ments with the use of numerical integration with
a step equal to the statistics locking interval until
the integral value exceeds the resource intensity
of the subtask.

Evaluation of resource intensity of a subtask is
performed by the developer as subtasks are gen-
erated on the basis of test runs. Estimation is made
in computational power units on the basis of com-
parison of the runtime to the reference task.

If the (t;; t,) interval features statistical proba-
bility of failure of the element that exceeds a cer-
tain threshold, the aggressiveness will be consid-
ered to equal zero.
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Reliability is inversely proportional to the num-
ber of failures of received subtasks through the
fault of the computing element for a certain period
of time.

A set of statistical data collected by the agent
task on a computing element includes:

the average execution time of one subtask
given its resource intensity;

the factor of load of computers with user
tasks (from 0, which indicates the absence of loads,
to 1, which indicates full loading with user tasks);

- the number of failures in a certain time in-
terval;

+ periods of unavailability of the element;

Statistics are collected at such a time interval
that reveals the frequency of changes in statistical
values (for example, daily, weekly) depending on
the mode of use of the computer.

The use of statistical data creates additional prob-
lems to be solved in the framework of operation:

development of an algorithm to determine
the duration of the statistics collection interval;

- development of effective methods of compu-
tation of aggressiveness in case of discrepancy be-
tween the real-time mode of use of computers at
the current time interval and the predicted mode
of use based on statistics [6].

Subtask Allocation Algorithm

In order to solve the subtask allocation task, we
recommend to use the mathematical apparatus of
the queuing theory [1, 2].

Building a mathematical model is based on the
following assumptions:

for each CE that is occupied with subtask
computation, the probability of release at a certain
time interval can be calculated;

- for any CE, the probability of failure/inac-
cessibility at any time interval can be determined,

- for each subtask, the estimated solution time
on any CE at any interval of time can be calculat-
ed (with the use of statistical data or methods of
predictive modeling of the load);

- with the knowledge of the nature of compu-
tation (iterative computation, computation with an
increasing number of subtasks etc.), the probability
of a certain number of subtasks of a specific resource
intensity at the next time interval can be predicted,;

- upon analysis of the data on the flow of sub-
tasks (change of their number and resource inten-
sity) and the likelihood of completion of computa-
tions with the use of CE, the resource intensity of
subtasks that may be generated at the next time
interval can be predicted.

The methods of identification and analysis of
relevant statistics are provided in [3, 4, 7].

The algorithm is based on the idea of partition-
ing computing elements into groups according to
their aggressiveness and on similar classification of
received resource-intensity subtasks so that each
group corresponds to own subgroup of computing
elements. When assigning a subtask, a computing
element that is part of the group of not less than
the task class is selected.

Thus, we are guaranteed to minimize the exe-
cution time required for the calculation of the most
resource-intensive subtasks, which reduces the con-
sequences of occurrence of possible failures. Parti-
tioning into groups simplifies the solution while al-
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lowing for handling the concepts of group resource
intensity and its volume (for subtasks) and handling
the probability of completion of computations by
means of a computing element of a particular group,
transfer thereof to another group, or probability of
failure (for groups of computing elements). It is also
possible to establish the relationship between re-
source intensity of the already-solved subtask and
the number and resource intensity of subtasks that
were generated on the basis of the results of its
computation by analyzing the set of solved subtasks
of a certain group.

The core of the idea of partitioning is the es-
timation of the possible time for calculation of
subtasks with the use of computing elements of a
certain group and the likelihood of occurrence of
more resource-intensive subtasks in the computa-
tion interval.

Analysis of subtasks can also allow for classi-
fication of the problems being solved into the fol-
lowing types on the basis of a number of features:

In terms of the nature of computations [5]:

- Iterative computations;

- Recursive computations.

In terms of the resource intensity of generated
subtasks in the course of solution of a single subtask:

- Decreasing resource intensity;

- Constant resource intensity;

- Increasing resource intensity.

In terms of the number of generated subtasks
per subtask of a specified type:

- Without generation;

- One to one;

- One to many.
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MPUHIIUIIN OPTAHI3AIIIL PO3IIOMIJIEHOIO OBYICJEHHA
B ROMIT'IOTOPHUX MEPERAX

Anorangisa

B miit cTaTTi HOCHiAIKYIOTBCA TPUHIIMIIY OPraHi3alii po3noaisieHnX KOMII IOTePHUX 00YMCJIeHb B KOPIIOPATHUB-
HUX Mepesxkax. Po3B'A3ana 3azada pPo3poOKM HOBOIO METOAY YIIPaBJIHHA PO3IOAITEeHNX 004MCIIOBaHb B KOP-
IIOPaTUBHUX MepesKaxX, AKMI MiHIMi3ye 4ac BMKOHAHHA OOYMCJIIOBAHb Ta ITOKPAIyE€ MEXaHi3M PO3IOiIeHHA
3a7a4 BCEpEeAVHI Mepeski.
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AHHOTAISA
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OIIHRA ROHRYPEHTOIIPUJATHOCTI PO3POBJEHNX HOBUX ITOCJYT
BISHEC-TOTEJIIO «<PRIME HOUSE» B MICTI RM€BI

Yyiiko A.M., Yyiiko M.M., Kooud H.T.
XapKiBCBKMUI TOPTOBEJIbBHO-€KOHOMIYHNI iIHCTUTYT
KuiBCcbKOro HalliOHAJILHOTO TOPTOBEJIbHO-EKOHOMIYHOIO YHIBEPCUTETY

PosroianyTo [OLibHICTE 1 IIePCHEeKTUBHICTh BUKOPMUCTAHHA y TOTEJbHO-PECTOPaHHOMY KOMILJIEKCI JTOaTKOBMX
IHHOBaLIMIHMX TIOCJIYT, 30KpeMa: MOKJINBICTb BIIKPMBATH IBEPI HOMeEpa 3a JOIIOMOTro MOOIJIbHOrO Tesedony (Bifg
rommaHii-po3pobunka Open Ways), peasizailisa npoekty «BipTyasbHuit KOHCbEPIK-CcepBic», iHHOBaIIiiHe 0popM-
JIeHHA Ta O0JIaJHaHHA KOH(pepeHI-3aJiB (BiIOKpeMJeHHa y 30HI AJA KaBa-OpeiiKiB TPbOX (PYHKIIOHAJIBHUX
JJIAHOK), IIOCJIyTY IPMBATHOIO CEKpeTaps, IlepeKjagada TOIo. KOMILIEKCHII TIOKa3HNK KOHKYPEHTOIPIIAaTHOCTL
TrOTEJILHOTO IIPOAYKTY MPOEKTyeMOro naisoBoro roreiso «Prime House» xaTeropii 4 3ipku mepeBuIllye 3HAYUEHHSA
KOHKYPEHTOIIPUIAATHOCTI TOJIOBHOTO TOTEJIO-KOHKYypeHTa «Bakkapa» Ha 15,9%, 1110 BKasye Ha IIEPCIEKTUBHICTb
TOTEJIBHOIO MIPOAYKTY 1 JI0r0 OCTATHIO KOHKYpeHTonpuaaTHicTb. Ha ocHOBI IpoBeeHNX po3paxyHKiB nobymoBa-
HO MO/JIeJIb KOHKYPEHTOIIPUIATHOCT] TOTEJIBHOTO IPOAYKTY.

KarodoBi caoBa: roresb, TroTesJbHO-PECTOPAHHMII KOMIIJIEKC, KOMILJIEKCHMII IIOKa3HMK, TIOTeJbHa IIOCJIyTa,
KOHKYPEHTHI IlepeBary, fgKiCTb IOCIYTN.

HOCTaHOBRa npobdaemMn. Y HaJlaHHI TOTeJb-
HUX [OCJIyT HaBasKJMBIIIY pPOJb Bimirpae
OUTAHHA IX AKOCTI Ta acopTUMeHTy. Bes sakicHoro
00CIyroByBaHHA TOTeJb He 3TATHUM JOCATTY CBOIiX
OoCHOBHMX I1ijieil. CBiTOBa IIpaKTMKa PO3BUTKY pPis-
HUX TOTeJIbHUX KOPIIOpalliif i JIaHIIOriB, AK IIpaBu-
JIO, CBIUMTB, II[0 OTPUMAHHA NPUOYTKY € pe3yJib-
TATOM BMCOKOI AKOcTi obciyroByBauHA [1]. Otixe,
AKICTb 00CJIyroByBaHHA B TOTEJBHOMY TOCIIOZap-
CTBI — IIOHATTA KOMILJIEKCHEe, TiCHO IIOB'd3aHe 3i
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CIIOYKMBAHHAM JBOX BUZIB OJiar (ToBapiB i mocyyr)
i 3 1BOMa BuJaMy BiIHOCUH (MaTepiaJbHMUX 1 HeMa-
TepianbHNx). HemaTepiaJbHMII ejleMeHT TOTeJIBHUX
IocJIyr — Ife atMmocdepa, nTpmuBabiMBicTh OTOYEHHH,
ecTeTnka, KoMmqopT, BiAU4yTTHA, TEIJIOTa 00CIyrOBY-
BaHHA, TO0OPO3NYINBICTD, CIIOKIN i BUCOKA KYyJIbTypa
MiskocobucTicHOTO crinkyBaHHA. J[o MaTepiaapHMX
HaJIe)KaTb HOMEPHMUiI (POHIZ, TOBapHO-MaTepiaJibHi
pecypcu i TeXHOJIOriA HallaHHA MOCJyr. ToMy CTBO-
PEHHS 1 BIPOBaIXKEHHA HOBIUX 1HHOBAIIIHMX IIOCJIYT,



