УДК 669.1.017:620.18

ТЕКСТУРНЫЕ ХАРАКТЕРИСТИКИ ТОЛСТОЛИСТОВОГО ПРОКАТА СТАЛИ 06Г2МТФБР

В. И. Большаков*, А. А. Брюханов**, С. И. Иовчев**, О. Л. Чепок**

*Приднепровская государственная академия строительства и архитектуры, **Южноукраинский национальный педагогический университет им. К. Д. Ушинского

Одним из главных научных направлений современного материаловедения является разработка и эффективное применение экономнои микролегированных термически упрочняемых конструкционных сталей. Широкое применение таких материалов требует научно обоснованных режимов термомеханической обработки листов, особенно в толщинах от 10–12 до 30–40 мм и более со стабильным уровнем механических и технологических свойств [1].

Толстолистовой прокат сертифицируют, как правило, интегральными свойствами, усредненными по всему объему, хотя он часто обладает высокой степенью структурной неоднородности, которая может как играть отрицательную роль (слоисто-хрупкое разрушение), так и служить дополнительным резервом улучшения механических и технологических свойств металлопродукции [2].

Важной структурной составляющей является текстура, которая определяет анизотропию физических и механических свойств металлов и сплавов и существенно влияет на конечные параметры изделий. Неоднородность текстуры особенно ярко проявляется в толстолистовом прокате ввиду различия механизмов деформации по толщине листов. Поэтому при дальнейшей обработке листовых полуфабрикатов (изгибе, сварке и пр.) могут наблюдаться неожиданные результаты.

В данной работе изучали распределение неоднородностей текстуры и анизотропии упругих свойств по толщине листов трубной стали после горячей прокатки.

Материалы и методика исследования. Материалом для исследований служили листы стали высокой прокаливаемости перлитного класса 06Г2МТФБР толщиной 18,7 мм производства Мариупольского завода Ильича. Легирующие элементы: 0,06 % С – 1,5 % Мп – 0,28 % Si – 0,2 % Ti – 0,27 % Мо – 0,66 % V – 0,05 % Nb. Производство таких листов включает в себя изготовление непрерывнолитых слябов с последующей гомогенизацией при температуре 1100 0 С в течение 3–4 часов. Далее проводилась черновая прокатка в интервале температур 1100 0 С – 920 0 С до 50 мм по толщине, а затем окончательная до 18,7 мм с конечной температурой 730 0 С. Листы разрезали по толщине на 3 пластины. Верхний слой представлял собой пластину от поверхности вглубь листа на 2,5 мм, промежуточный слой – от 3,05 до 5,10 мм и средний слой – от 6,10 до 8,15 мм по толщине. Микроструктура стали имеет характерный вид для сталей такого типа (рис.1) с явно выраженной вытянутостью зерен в направлении прокатки (HII). С глубиной от поверхности листов микроструктура изменяется несущественно.

Рис. 1. Микроструктура промежуточного слоя на глубине 6,5 мм от поверхности листов стали $06\Gamma 2MT\Phi 5P$ после горячей прокатки с конечной температурой 720 °C (×400).

Текстуру изучали в представлении интегральных характеристик текстуры (ИХТ), содержащих исчерпывающую информацию об анизотропии свойств листов кубических металлов и сплавов. В [3] было показано, что текстурованный лист металла, полученный любым из видов прокатки, может рассматриваться как квазимонокристалл орторомбической симметрии. Тогда анизотропия свойств четвертой тензорной размерности, например модуля Юнга, такого квазимонокристалла представляется в виде:

$$\frac{1}{E(\varphi)} = s_{1111}^T \cos^4 \varphi + s_{2222}^T \sin^4 \varphi + \left(s_{1212}^T + \frac{1}{2}s_{1122}^T\right) \sin^2 2\varphi, \qquad (1)$$

где S_{ilkl}^{T} – компоненты тензора податливости такого квазимонокристалла, индекс (*T*) относит указанные величины к текстурованному квазимонокристаллу, угол \mathcal{O} отсчитывается от направления прокатки (НП).

Константы s_{ijkl}^{T} могут быть найдены путем усреднения значений констант податливости реального монокристалла по всем существующим в текстуре листов ориентациям [4]. При наличии функции распределения кристаллов по ориентациям (ФРО), например, в пространстве углов Эйлера, эта процедура имеет вид:

$$s_{ijkl}^{T} = \left\langle s_{ijkl}'(g) \right\rangle = \int s_{ijkl}'(g) f(g) dg , \qquad (2)$$

^{*g*} где $\langle S'_{ijkl}(g) \rangle$ означает усреднение по ориентациям, а $S'_{ijkl}(\varphi_1, \phi, \varphi_2)$ значения констант податливости кристалла в системе координат образца, в качестве последних используют НП, поперечное направление (ПН) и нормальное к плоскости листа направление (НН), $g = (\varphi_1, \phi, \varphi_2)$ – углы Эйлера, последовательные повороты на которые совмещают системы координат отдельного кристалла и образца (листа); dg – элемент объема в пространстве углов Эйлера [3]. Вместо ФРО могут быть использованы и другие весовые функции, например, распределение полюсной плотности направлений [111] на сфере проекций. В этом случае необходимо использовать и соответствующую полюсную фигуру.

В [5; 6] компоненты тензора податливости текстурованного листа в модели квазимонокристалла были рассчитаны и на основании их получили выражения для анизотропии модулей Юнга и сдвига листов кубических металлов и сплавов в плоскости листов в виде:

$$E^{-1}(\varphi) = s_{11} - k \psi^T(\varphi),$$
 (3)

$$G^{-1}(\varphi) = s_{44} + 2k\psi^{T}(\varphi),$$
(4)

где *E* и *G* – модули Юнга и сдвига, *S*_{*ij*} – константы податливости кубического монокристалла;

$$k = \left(s_{11} - s_{12} - \frac{1}{2}s_{44}\right); \tag{5}$$

$$\psi^{T}(\varphi) = 1 - (I_{1}^{(k)} \cos^{4} \varphi + I_{2}^{(k)} \sin^{4} \varphi + 1,5I_{3}^{(k)} \sin^{2} 2\varphi);$$
(6)

$$I_{1}^{(k)} = \left\langle \alpha_{11}^{4} + \alpha_{12}^{4} + \alpha_{13}^{4} \right\rangle$$

$$I_{1}^{(k)} = \left\langle \alpha_{11}^{4} + \alpha_{12}^{4} + \alpha_{13}^{4} \right\rangle$$
(7)

$$I_{2}^{(k)} = \langle \alpha_{21}^{2} + \alpha_{22}^{2} + \alpha_{23}^{2} \rangle$$
$$I_{3}^{(k)} = \langle \alpha_{11}^{2} \alpha_{21}^{2} + \alpha_{12}^{2} \alpha_{22}^{2} + \alpha_{13}^{2} \alpha_{23}^{2} \rangle$$

 $I_i^{(k)}$ – названы в [5] интегральными характеристиками текстуры (ИХТ). Они

содержат полную информацию об анизотропии свойств, поддающихся тензорному описанию, и могут быть рассчитаны из данных рентгенодифрактометрического эксперимента при помощи функций распределения кристаллов по ориентациям (ФРО). Для ГЦК металлов и сплавов задача нахождения ИХТ упрощается для случая полюсных фигур от изотропной плоскости (111). Для ОЦК металлов и сплавов такой изотропной плоскостью с точки зрения рентгенографии является (002), которая далеко не всегда четко проявляется экспериментально.

Прямым интегрированием выражения (1) получили формулы для амплитуд гармоник, представления анизотропии модуля Юнга в виде рядов Фурье. Так как функция (1) является четной, то в модели ортотропного поликристалла такие ряды содержат только вторые и четвертые гармоники ряда Фурье в виде:

$$E^{-1}(\varphi) = A_0 + A_2 \cos 2\varphi + A_4 \cos 4\varphi ,$$

$$A_0 = s_{11} - k \left[1 - \frac{3}{8} (I_1 + I_2) - \frac{3}{4} I_3 \right],$$
(7)

$$A_2 = \frac{1}{2}k(I_1 - I_2), \tag{8}$$

$$A_4 = \frac{k}{8} \left(I_1 + I_2 - 6I_3 \right)$$
 (9)

Таким образом, если известны константы монокристалла и экспериментальная анизотропия модуля Юнга, значения ИХТ могут быть найдены из выражений

$$I_3 = \frac{A_0 - 3A_4 - s_{11} + k}{3k},\tag{10}$$

$$I_2 = \frac{3kI_3 + 4A_4 - A_2}{k},\tag{11}$$

$$I_1 = \frac{3kI_3 + 4A_4 + A_2}{k} \,. \tag{12}$$

Далее можно рассчитать анизотропию модуля сдвига по (2) и значение модуля Юнга в (HH) по формуле:

$$E_{HH}^{-1} = \left(s_{3333}^{T}\right)^{-1} = s_{11} - k\left(1 - I_{4}^{(k)}\right),$$
(13)
rge $I_{4}^{(k)} = \left\langle \alpha_{33}^{4} \right\rangle = I_{1}^{(k)} + I_{2}^{(k)} + 2I_{3}^{(k)} - 1.$

На рисунке 2 приведены кривые зависимости модуля Юнга от направления измерения для различных слоев исследуемой стали, а в таблице 1 – значения амплитуд гармоник представления анизотропии *I/E* в виде рядов Фурье.

Рис. 2. Ориентационная зависимость модуля Юнга в различных поперечных сечениях листа стали 06Г2МТФБР: ◆ – поверхностный слой,
 ■ – промежуточный слой, ▲ – средний слой.

Таблица 1

Значения амплитуд гармоник разложения анизотропии модуля Юнга в плоскости толстолистового проката стали 06Г2МТФБР на различной плоскости толстолистового проката стали 06Г2МТФБР на различной

плубине от поверхноети.				
Глубина от	Значения амплитуд гармоник, A _i ·10 ⁻¹¹ м ² /H			
поверхности листа,	A_0	A_2	A_4	
MM				
0–2,5	0,5266	-0,0198	-0,002	
3,05-5,10	0,5294	-0,0148	-0,0123	
6,10-8,15	0,532	-0,0258	-0,027	

Поверхностный слой обладает минимальной анизотропией модуля Юнга (8%) и характерен достаточно плавным уменьшением E от НП к ПН. Наибольшей анизотропией модуля Юнга обладает средний слой листа, для которого коэффициент анизотропии E составил 17% с минимумом для направления 45–50⁰ к НП. Промежуточный слой по характеру близок к среднему, но с несколько меньшей анизотропией (14%).

Гармонический анализ анизотропии модуля Юнга (табл. 1) показал, что в среднем и промежуточном слоях анизотропия *E* определяется примерно равным вкладом второй и четвертой гармоник разложения *E* в ряд Фурье, а в поверхностном влияние четвертой гармоники значительно меньше. Здесь анизотропия *E* могла бы быть описана влиянием только одной эффективной ориентировки (135) [211], как это было показано в [7] на основании анализа упругой анизотропии различных плоскостей кубического кристалла. Там же было показано, что наибольший вклад в четвертую гармонику разложения анизотропии в ряд Фурье вносят ориентировки типа (001) [*UVW*], которых больше всего в среднем и поверхностном слоях. Однако в поверхностном слое ввиду значительного рассеяния они могут быть смещены по направлению на углы порядка $\pi/4$ и, следовательно, гасить друг друга.

Поэтому и анизотропия в поверхностном слое меньше. В промежуточном слое анизотропия модуля Юнга определяется, в основном, вкладом ориентировок (101)[*UVW*], для которых характерна анизотропия модуля Юнга, описываемая примерно одинаковым вкладом второй и четвертой гармоник представления анизотропии в виде ряда Фурье [7].

По (10) –(12) рассчитали ИХТ на различной глубине от поверхности листов. Результаты приведены в таблице 2. В качестве константы податливости использовали экспериментальные данные для железа [8].

Таблица 2

Интегральные характеристики текстуры листов стали 06Г2МТФБР на различной глубине от поверхности

Глубина от поверхности	Значен	Значения интегральных характеристик		
листа, мм	I_{I}	I_2	I_3	
0–2,5	0,593643	0,659759	0,213312	
3,05-5,10	0,589407	0,638956	0,232156	
6,10-8,15	0,550805	0,637069	0,25813	

Из таблицы следует, что с глубиной от поверхности листа I_1 и I_2 убывают, а I_3 – монотонно увеличивается. Уменьшается сумма первых двух ИХТ, что приводит к увеличению анизотропии модуля Юнга и изменению ее характера за счет роста амплитуды четвертой гармоники ряда Фурье.

По (4) рассчитали анизотропию модуля сдвига в поверхностных, средних и промежуточных слоях листов стали. Анизотропию коэффициента Пуассона рассчитали по классической формуле:

$$v(\varphi) = \frac{E(\varphi)}{2G(\varphi)} - 1$$

Результаты приведены на рисунках 3 и 4.

Рис. 3. Ориентационная зависимость модуля сдвига в различных поперечных сечениях листа стали 06Г2МТФБР:

- ♦ поверхностный слой,
- – промежуточный слой,
- ▲ средний слой.

енозеби 0,47 0,37 0,37 0,0,37 0,0,37 0,0,17 0,15 30 45 60 75 90 Угол с направлением прокатки, град.

Рис. 4. Ориентационная зависимость коэффициента Пуассона в различных поперечных сечениях листа стали 06Г2МТФБР:

- ♦ поверхностный слой,
- промежуточный слой,
- ▲ средний слой.

Из рисунков 2-4 следует, что горячекатаные листы стали 06Г2МТФБР существенно неоднородны в отношении анизотропии упругих свойств. С глубиной от поверхности листов степень анизотропии увеличивается. Наибольшей анизотропией модулей Юнга, сдвига и коэффициента Пуассона обладает средний слой листов, а наименьшей – поверхностный. Причем поверхностный слой отличается от среднего и по характеру анизотропии. Поэтому при деформации прокаткой, изгибом и пр. промежуточный слой находится в особых условиях. Различный характер анизотропии коэффициента Пуассона в поверхностном и среднем слоях должен приводить к появлению дополнительных напряжений в промежуточном. Ранее при оценке остаточных напряжений первого рода методом смещения центра тяжести рентгеновских линий (110), (200) и (112) было обнаружено, что пик остаточных напряжений приходится на глубину порядка 5 мм от поверхности листа [9]. Аналогичный результат показали и исследования изменения пика Баркгаузена с глубиной для этой стали. Безусловно, что в этом большую роль играет широкий спектр факторов (распределение углерода, легирующих элементов, неоднородность по размеру зерна и пр.), но существенный вклад вносит и текстурная составляющая.

Следует отметить, что «эффект текстуры» редко учитывается в конструкторских задачах, кроме трансформаторных сталей, где анизотропия магнитных свойств проявляется очень резко. Помимо всего прочего, это связано с трудностью задания текстурных характеристик листовых полуфабрикатов. Использование для этой цели функций распределения ориентаций требует не только громоздких и сложных дополнительных расчетов, но и специальной подготовки конструкторов. Использование полюсных фигур (обратных и прямых) тоже требует целой цепи дополнительных действий. Поэтому эти способы вряд ли целесообразно использовать для сертификации листового проката по текстурным характеристикам. В данной работе продемонстрирована информативность интегральных характеристик текстуры, которые могут быть достаточно просто найдены из данных рентгенодифрактометрического эксперимента или из измерений ориентационной зависимости тензорных свойств в плоскости листов. Для кубических металлов и сплавов интегральные характеристики – это три числа, соотношения между которыми несут достаточно исчерпывающую информацию об анизотропии свойств поликристаллического объекта. Поэтому сертифицировать листовой прокат по анизотропии свойств удобно именно посредством таких характеристик.

выводы

1. Интегральные характеристики текстуры содержат исчерпывающую информацию об анизотропии свойств листового проката и могут быть рекомендованы для его сертификации.

2. Интегральные характеристики текстуры могут быть найдены с удовлетворительной точностью из данных Фурье-анализа экспериментальной анизотропии модуля Юнга в плоскости листов для сталей с известными монокристальными характеристиками. Соотношение между интегральными

характеристиками определяет и характер, и степень анизотропии свойств упругости листовых текстурованных объектов.

3. Листы стали 06Г2МТФБР после горячей прокатки обладают высокой неоднородностью в отношении упругих свойств по толщине. Наибольшая анизотропия модулей Юнга, сдвига и коэффициента Пуассона характерна для среднего слоя листа, для которого коэффициент анизотропии для этих свойств составил 17 % с минимумом для направления 45–50⁰ к НП. Поверхностный слой обладает минимальной анизотропией модуля Юнга (8 %) и характерен симметрией второго порядка.

Литература

1. Большаков В. И., Лобанов Л. М., Рычагов В. Н., Жербин М. М. Еще раз о создании СНиП «Стальные конструкции» для Украины // Металознавство та термічна обробка металів. – 1999. – № 4. – С. 3–12.

2. Одесский П. Д., Кулик Д. В., Конин Д. В. Опасность разрушений при возведении уникальных инженерных сооружений и обеспечение их эксплуатационной надёжности. IV Евразийская научно-практическая конференция «Прочность неоднородных структур». – М.: МИСиС, 8–10 апреля 2008. – С. 5.

3. Bunge H. J. Mathematische Metoden der Texturanalyse. Berlin. Akademie-Verlag, 1969. – 330 p.

4. Манита А. Д. Теория вероятностей и математическая статистика. – М.: Изд. отдел УНЦ ДО МГУ, 2001. – 120 с.

5. Брюханов А. А., Гохман А. Р. Интегральные характеристики текстуры кубических и гексагональных металлов // Изв. вузов. Физика. – 1985. – № 9. – С. 127.

6. Гохман А. Р., Жуковский В. К. Зависимость физико-механических свойств конструкционных материалов электронной техники от текстуры // Изв. вузов. Материалы электронной техники. – 2005. – № 1. – С.70–78.

7. Брюханов А. А. Общие закономерности анизотропии упругих свойств кубических кристаллов и текстура металлов кубической системы. 1.Текстуры прокатки // Изв. вузов. Физика. – 1977. – № 4. – С.153.

8. Шульце Г. Металлофизика. М.: Мир, 1971. – 503 с.

9. Брюханов А. А., Гохман А. Р., Волчок Н. А. и др. Тезисы докладов II Евразийской научно-практической конференции "Прочность неоднородных структур ПРОСТ–2008". – Текстурная неоднородность и распределение анизотропии свойств толстолистового проката стали 06Г2МТФБР по толщине, апрель 2008. – М.: МИСИС. — 1с.