УДК: 669.017:620.18+669.27+669.054.8 АНАЛІЗ ЕЛЕКТРОННО-ОПТИЧНИХ ДОСЛІДЖЕНЬ ЕКСПЕРИМЕНТАЛЬНИХ СПЛАВІВ СИСТЕМИ Fe – W ТА ФЕРОВОЛЬФРАМУ

О. А. Глотка, к. т. н.

Запорізький національний технічний університет

При використанні легуючих елементів із високою температурою плавлення, у «чистому» вигляді, їх розчинення в рідкому сплаві потребує великих затрат енергії. З метою зниження витрат використовують феросплави, які швидко розчиняються в стальній ванні завдяки вмісту в них залізної складової. Час розчинення при цьому скорочується із збільшенням вмісту заліза в сплаві [1].

Феровольфрам витоплюють з використанням вольфрамумісних руд із додаванням стружки або окалини заліза. Для реакції відновлення вводять нафтовий або коксовий пек, гранульований феросиліцій чи порошкоподібний алюміній [2]. У відповідності з ГОСТом 17293-82 кількість вольфраму в сплавах коливається в межах 65–80 % (мас.).

В останні роки ціна на легуючі елементи суттєво підвищилась, тому використання високолегованих сталей, до яких належать спеціальні матеріали, що використовують у газотурбобудуванні, значно обмежується. Аналіз ринку металопродукції показує, що вартість феровольфраму коливається в межах 220–230 грн/кг [3; 4]. В той же час вартість важкотопкого брухту, що містить вольфрам, становить 55–80 грн/кг [5]. Отже, використання брухту із певним вмістом легувального елемента, для виплавляння сплавів системи Fe – W, суттєво знизить собівартість високовольфрамових спеціальних матеріалів, а також інших вольфрамумісних сплавів [6].

Метою роботи є порівняльний аналіз електронно-оптичних досліджень сплавів системи Fe – W та феровольфраму для визначення можливості подальшого використання експериментальних сплавів у виробництві спеціальних матеріалів, що використовуються у газотурбобудуванні.

Матеріали та методика дослідження.

Для виготовлення Fe – W сплавів використовувався важкотопкий брухт (системи W – Ni – Fe), що містить в своєму складі близько 80 % (мас.) вольфраму [7] та те хнічно чисте залізо. Витоплення сплавів проводилось у печі ОКБ 862 на повітрі в графітовому тиглі, нагрівання здійснювали до повного розтоплення компонентів. Було витоплено 6 зливків масою по 200 г кожний, з умістом вольфраму 30, 50 та 70 % (мас.) (по 2 плавки відповідно).

Дослідження фазового складу сплавів виконано на дифрактометрі ДРОН-1 у мідному випромінюванні з монохроматизацією дифракційних променів. Природу фаз визначали, порівнюючи експериментальні значення

міжплощинних відстаней $d_{HKL} = \frac{d_{hkl}}{n}$ із табличними даними [8]. Похибка при вимірюванні не перебільшувала 1.36 ×10⁻⁴ нм.

Хімічний склад та мікроструктуру зразків досліджували з використанням растрового електронного мікроскопа JSM 6360 фірми JEOL (Японія) та РЭМ-106И фірми SELMI (Україна), які оснащені системою рентгеноспектрального енергодисперсійного мікроаналізу (РСМА) при прискорювальній напрузі 20 кВ та силі струму зонда 4 нА у вторинних електронах. Кількість кожного елемента визначалась при порівнянні інтенсивностей випромінювання зразка з інтенсивністю еталонів, які постачаються разом із програмним забезпеченням. Дослідження проводилося на механічно полірованих зразках із наступним хімічним травленням (використовувався реактив «Марблє» впродовж 5–10 с).

Результати дослідження та їх обговорення

При витопленні сплавів системи Fe – W була зафіксована зміна маси зливка порівняно з масою шихти. Різниця коливалася в межах від 1 % (для сплаву з 30 % W (мас.)) до 6,7 % (для сплаву з 70 % W (мас.)).

Зразки для дослідження мікроструктури вирізалися паралельно вертикальній осі зливка з метою дослідження розподілу вольфраму.

Дослідження мікроструктури сплавів показало, що сплав Fe – 30 % W має неоднорідну структуру з великою кількістю включень вторинної фази, що має неоднорідну морфологію (від голчастої до сферичних вкраплень) (рис. 1). Така неоднорідність у структурі пояснюється нерівноважністю кристалізації зливка. Рентгеноструктурний аналіз показав, що структура складається з α -твердого розчину на основі заліза та інтерметалідної сполуки Fe₂W (λ фаза). Інтерметалід утворюється за перитектоїдною реакцією при температурі 1060 °C із α (Fe) та μ фази (Fe₇W₆) [9]. Fe₂W зникає при довготривалих відпалах (2 000 год.) при температурі 1 000 °C і має період гратки a = 0,4737 нм та b = 0,7700 нм.

РСМА дослідження виявили різницю в хімічному складі основи сплаву та включень. Середнє значення хімічного складу для основи перебуває в межах 67,14 % Fe – 1,45 % Ni – 31,41 % W; в той час як включення має такий склад: 25,58 % Fe – 0,63 % Ni – 73,79 % W. Такі дані вказують на те, що включення за хімічним складом буде наближатися до стехіометрії інтерметаліду типу Fe₂W.

Рис. 1. Мікроструктура сплаву системи Fe – 30 % W ($a - \times 300$; $\delta - \times 2000$)

Мікроструктуру сплаву Fe – 50 % W брухту наведено на рисунку 2 при різних збільшеннях. Структура є доволі розвиненою з осями дендритів

різного порядку, між якими розташовані ділянки з евтектичною структурою. Евтектика має пластинчасту форму, що нагадує «кошикове плетіння».

Рис. 2. Мікроструктура сплаву Fe – 50 % W($a - \times 150$; $\delta - \times 1200$)

Дослідження фазового складу сплаву показало, що структура складається з α -твердого розчину на основі заліза та інтерметаліду Fe₇W₆. Сполука Fe₇W₆ (µ-фаза) утворюється в системі за перитектичною реакцією з розплаву, який містить 20,6 % (ат.) вольфраму [9]. За даними [10], інтерметалід стабільний в широкому інтервалі температур, від 1 637 °С до кімнатної, і зникає лише при витримці 1 000 °С впродовж 2 000 годин. µ-фаза має межу гомогенності від 39 % (ат.) до 45 % (ат.) W [11]. Залежно від хімічного складу змінюється і період гратки: a = 0,4755 нм b = 2,583 нм – для стопів з великим вмістом заліза; a = 0,4771 нм, b = 2,596 нм – для стопів з великим вмістом вольфраму.

Матриця сплаву має хімічний склад 59,34 % Fe – 7,85 % Ni – 32,81 % W, а пластинчасте включення 41,24 %Fe – 4,91 % Ni – 53,85 % W. За хімічним складом пластинчаста фаза не відповідає стехіометрії інтерметаліду Fe₇W₆, але слід вважати, що експериментальний сплав містить не два компоненти, а принаймні три (W – Fe – Ni). Це може викликати зсув концентраційного інтервалу існування μ -фази в межі менших концентрацій вольфраму. Окрім цього, в роботі [12] приводиться, що фаза може відповідати формулі Fe₃W₂, тобто змінювати співвідношення між вмістом елементів залежно від умов кристалізації та кількості вольфраму.

Сплав Fe – 70 % W має схожу мікроструктуру зливка зі сплавом Fe – 50 % W. Поряд із дендритними включеннями «ялинкового» типу спостерігається евтектична складова пластинчастого вигляду (рис. 3). Однак у певних областях зливка присутні сферичні вкраплення, які не спостерігалися в жодному з розглянутих матеріалів (рис. 3 а).

Рис. 3. Мікроструктура сплаву Fe – 70 % W (*a* – ×100; б – ×400)

Фазовий аналіз сплаву показав, що окрім фаз α (Fe) та Fe₇W₆, які присутні в сплаві Fe – 50 % W, з'являється α -твердий розчин на основі вольфраму. Дослідження розподілу елементів по поверхні шліфа показало, що вольфрам присутній в пластинчастих виділеннях, причому кількість вольфраму знижується від центра до периферії. Округлі частинки є твердим розчином на основі вольфраму з кількістю вольфраму на рівні 90–95 %. Ймовірно, що частинки вольфраму, які потрапили в сплаві з важкотопким брухтом та не розчинилися в розплаві, стають центрами зародження µ-фази. Також можлива недостатня кількість заліза для утворення інтерметаліду.

Порівняння мікроструктури сплаву Fe – 70 % W із стандартним феросплавом ФВ 70 (рис. 4) дає змогу стверджувати, що у феровольфрамі присутньо значно більше сферичних вкраплень, які класифікуються як твердий розчин на основі вольфраму, а кількість пластинчастої фази значно менша. Така відмінність зумовлює збільшення кількості тепла та тривалості розчинення сплаву порівняно з експериментальними сплавами.

Рис. 4. Мікроструктура феровольфраму ФВ 70 ($a - \times 120$; $\delta - \times 600$)

Для перевірки наявності домішок у сплавах використано метод РСМА. Такі елементи як сірка, фосфор, кремній, марганець та вуглець перебувають за зоною чутливості приладу. Поріг розпізнання сірки та фосфору знаходиться за вмістом 0,05 % (мас.), кремнію та марганцю – 0,3 % (мас.), а вуглецю 0,1 % (мас.). Порівнюючи отримані результати з ГОСТом 17293-93, маємо відповідність за хімічним складом стандартним стопам феровольфраму.

ВИСНОВКИ

Таким чином, після дослідження експериментальних сплавів і проведеного аналізу структурно-фазового складу слід зробити висновок, що за хімічним складом, структурою та домішками виготовлені сплави прирівнюються до стандартних феровольфрамових сплавів, а в деяких випадках значно кращі і можуть використовуватися для легування сплавів на основі заліза. В подальшому заплановано виготовлення високовольфрамового інструментального стопу з використанням експериментальних сплавів та дослідження його структурно-фазового стану.

Література

1. Durrer R. Metallurgie der ferrolegierunger / R. Durrer, G. Volkert. – Springer–Verlag Berlin, Heidelberg New York, 1972. – 675 c.

2. Рысс М. А. Производство ферросплавов / М. А. Рысс. – М. : Металлургия, 1985. – 345 с.

3. http://www.ufas.ru

4. http://www.pmt.ru

5. http://www.vtorcvetmet.ru

6. Глотка О. А. Виготовлення Ni–W лігатури для легування стопів на основі нікелю / О. А. Глотка, А. Д. Коваль // Вестник двигателестроения, 2008. – № 1. – С. 139–142.

7. Глотка О. А. Дослідження важкотопкого брухту, що містить вольфрам [Текст] / О. А. Глотка, А. Д. Коваль, Л. П. Степанова // Нові матеріали і технології в металургії та машинобудуванні, 2007. – № 1. – С. 17–20.

8. Миркин Л. И. Справочник по рентгеноструктурному анализу / Л. И. Миркин. – М. : Металлургия, 1978. – 678 с.

9. Лякишев Н. П. Диаграммы состояния двойных металлических систем / Н. П. Лякишев. – М. : Машиностроение, 1997. – 1025 с.

10. Sinha A. K., Hume-Rothery W. / J. Iron Steel Inst., 1967. – V. 205. – № H. – P. 1145–1149.

11. Sykes W. P. / Trans. ASM, 1936. - V. 24. - P. 541-550.

12. Kirshner G., Harvig H., Uhrenius B. / Metall. Trans., 1973. – V. 4 – № 4. – P. 1059–1064.