IH®OPMAILIMHI TEXHOJIOTTI

UDC 519.7

Tupkalo V. N.

SIGNATURE CHECKING OF ROM MODULES

A method is proposed for ensuring the fault tolerance of read-only memory modules (ROMs)
based on the principle of predicting a control signature in each access cycle to memory. The
necessary conditions were found for solving the recovery problem for lost data during the scan of the
read operation.

The importance of any built-in verification method increases, if along with the solution of the
verification problem the method has some additional capabilities. The article shows that the proposed
signature method for checking the status of the programmed ROM allows, in principle, to solve the
problem of regeneration (recovery) for lost data at the time of checking the read operation.

The solution to this problem is based on the aforementioned principle of signature prediction,
expressed in the form of a signature verification rule.

Key words: memory modules, signature, work check, forecasting, digital control systems.

The need in fault-tolerant digital control systems (DCS) of different purpose calls for searching
new approaches to solving the problem of checkability of DCS functional units and, in particular,
memory modules.

Depending on the type of access operations the DCS memory units are classified as random-
access memory (RAM) modules and read-only memory (ROM) modules. For RAMs there exists an
efficient hardware-microprogram method for checking the state during the operation pauses whose
essence reduces to preliminary reading and storing of a cell’s contents with its subsequent inversion
and with repetition of the write-read cycle to compare the results [1]. This method is inapplicable for
ROM because in this case the possibility of the write operation is excluded.

From the standpoint of functional representation of models for checking objects, a DCS ROM
is a state checking (diagnostics) object with transfer function ¥ performing a mapping ¥: K(A) —
K(B), where K(A) is a tuple of cell addresses and K(B) is a tuple of the cells’ contents. The mapping
should be regarded here as being many-valued (surjective) because a DCS ROM may contain
different cells with the same contents. Therefore the combination of the input sequence in the form
K(A) and the output sequence in the form K(B) cannot be interpreted as ROM test in the general case.

The set A of the ROM addresses is always finite, and under sampling it can be represented by
N! (N is the number of memory cells) tuples of the same power, which are ordered. Therefore the
unitariness (determinism) principle for checking will hold if, in accordance with the well-known
concept in [2], the test is formed as a pair of tuples {K(A), K(A#B)}, where # is a superposition
(composition) operation for the sets of addresses A and contents B such that the mapping

Py K(A) —>K(A#B) = K(A)#K(B). (1)

Problem statement. In view of condition (1), the problem of synthesizing a test for checking
the states of a programmed ROM module can be stated in the following way: given the contents B of
the ROM cells, it is required to synthesize an input test action K*(A) using the given set A of ROM
addresses such that the function Wi for the established (chosen) operation # is algorithmically
computable (a computing algorithm for the function W# must necessarily exist [3]).

75

It should be noted that in the context of the general problem of checking the states of the ROM
during the pauses in its operation the requirement of algorithmical computability of the function W
must be regarded as being only a necessary but not sufficient condition for test synthesis because the
mapping (1) preassigns no principle for forming the template. Therefore, proceeding from the
requirement that the unitariness principle should hold for the functional checking, we state a sufficient
condition for synthesizing the ROM test in the following way: if, in accordance with (1), the function
Wy is algorithmically computable, then checking the ROM state can be reduced to checking a
characteristic feature of the current (i+l)-th n-digit binary vector (A # B)i+1 of the tuple K(A # B) by
using the characteristic features of the directly preceding i-th vector (A # B)i (i = 1, 2, .., are the
memory access cycles) if the functional relationship

(A#B)i+ = Yx(A#B)i. (2)

corresponds to the function computing algorithm.

We will prove that, in principle, for any contents of ROM cells the condition (2) is satisfied
guaranteeing the test checkability of the ROM according to the principle of prediction of checked
binary vectors. To this end we use the fact that the number of memory cells in the existing and newly
elaborated ROMs is a multiple of a power of two. Moreover, based on the notion of "algorithmic
solvability" [3] known from the algorithm theory we introduce the following definition.

Definition 1. An ROM test {K*(A4); K*(A#B)} is said to be (algorithmically) solvable if for
its tuple K*(A#B) there exists a formation algorithm coinciding with the computing algorithm for the
function (2). In this case the tuple K*(A) is called a solvable test action.

Theorem 1. An ROM test is algorithmically solvable if the number of test words in the tuple
K(A) is equal to | K(A) | =2"-1, where n =1ogzN and N is the number of memory cells.

Proof. First, it is necessary to prove that in the context of condition (2) there always exists a
composition operation # such that the mapping (1) is one-to-one. Indeed, since the tuple K(A) is
strictly ordered, the tuple K(A # B) = K(A) # K(B) is also strictly ordered for any cell contents, if #
is the logical operation on binary numbers (the concatenation operation V). For example, if Ai =
0110111 and Bi = 10101, then A; # Bi = Ai V Bi = 011011110101. The requirement that the mapping
() be injective implies that |K(A)| = [K(A) # K(B)| = 2". Therefore, according to Definition 1, the
tuple K(A) is a solvable test action if for the tuple K(A) # K(B) there is an algorithm that gives the
answer to the question whether A;j belongs to the tuple K(A) or not for any of the numbers A; € K(A).
As is known from coding theory, such an algorithm exists for a sequence of numbers formed with the
help of a shifting register with feedback (in the form of polynomial number generators) [4]. In this
case the maximum number of different n-digit numbers is generated when the feedback is described
by an irreducible primitive polynomial G(x) = gnX"+gn-1x"1+...+ gix+1 of degree n, i.e.,
|K(A)| =2"-1 (a zero number in the tuple K(A # B) is excluded).

Based on Theorem 1, we can conclude that the method for solving the problem of checking the
state of a programmed ROM must involve the following two consecutive synthesis stages: when data
are written in the ROM, the relation (1) is fulfilled with condition B;j # A; = 00...0 ¢ K(A # B) being
satisfied; and, with account of the selected polynomial G(x) for generating a test of degree n = logzN,
the set A # B is ordered so that the tuple K(A # B) is predictably checkable when checking the state
of the programmed ROM, i.e., the algorithmic computability of the function (2) is ensured. In this
case the resulting tuple K(A) is the tuple K*(A). When these synthesis stages are realized, the
programmed ROM is regarded as being predictably checkable.

The proof of Theorem 1 implies that since the algorithmically solvable function for generating
the test with |[K(A)| = 2"-1 is a known function generating binary numbers with the aid of a shift
register toward higher digits with modulo-two adder feedback described by an irreducible primitive
polynomial G(x) [4], the general relationship (2) for an n-digit binary notation satisfies the recurrence
relation

(A#B)ir1 =2(A#B)i @ rmilXa=19a(aq # ba)il, (3)

76

where (i + 1) and i are, respectively, the subsequent and preceding shift cycles, rpy is an n-digit
constant with unity only in the least significant digit, g. are the coefficients in nonzero terms of the
polynomial G(x) for generating binary numbers, and (a. # b.)i is the value of the a-th digit of the
number (A # B);.

In view of the fact that the Boolean equivalent of the arithmetic function for adding two
identical numbers R has the form 2R = RORAH(R+R) = H(R+R) [5] and H(R+R) is the Boolean
operation (function) producing numbers whose code characterizes the positions of carry unities in the
addition of identical numbers, we finally obtain the following expression for (3)

(A#B)is1 = H[(A#B)i+(A#B)i] @ rinlXi=1 9a(aq # ba)il, (4)

where H[(A#B)i+(A#B)i] is obtained by truncating the code of the number H[(A#B)i+(A#B)i] on
the left (discarding the highest-order digit).

Therefore under the transition from the numbers in (4) to their signatures sg the signature
checking rule for the state of a predictably checkable ROM is written as

sg(A#B)is1 =sgH[(A#B)i+(A#B)i] @ rnlXa=19a(aq # ba)il- ()

An example demonstrating the essence of the stages in the suggested technique for synthesizing
an algorithmically solvable test (see Definition 1) for checking the states of a programmed ROM with
organization 32 X 4 is presented in Tables 1 and 2. It is assumed that the tuple elements in Table 2
follow from top to bottom. The role of the operation # is played by the modulo two addition of two
digits with the same polynomial weight.

Table 1

B;j Aj Bj # Aj Bj Aj Bj # Aj
0000 00001 00001 0111 11111 11000
0001 00010 00011 1000 00111 01111
0001 00011 00010 1000 10011 11011
0001 00100 00101 1000 10100 11100
0001 01101 01100 1001 10110 11111
0010 00110 00100 1010 11001 10011
0010 01111 01101 1010 11110 10100
0010 10000 10010 1011 01100 00111
0011 01010 01001 1100 10001 11101
0011 01001 01010 1100 11011 10111
0100 10010 10110 1101 11101 10000
0100 10101 10001 1101 10111 11010
0101 01011 01110 1110 00101 01011
0101 11100 11001 1110 01000 00110
0110 01110 01000 1111 11010 10101
0110 11000 11110

A fundamental property of an algorithmically solvable test {K*(A); K*(A# B)} is that it can
cycle an unbounded number of times and that the tuple K*(A4) must not necessarily return to the initial
address after an interruption of the diagnosing process (owing to the end of a pause in the ROM
operation).

Definition 2. A test of a predictably checkable ROM is said to be enumerable if

IK(A)| = 2n-1.

The notion of an enumerable test (enumerable set [3]) relates to a typical situation when the
amount and the values of the numbers meant for storage make it possible to synthesize the test without

77

cycling. Such a test does not permit the diagnosis of the first cell addressed by the tuple K(A). We
will illustrate this situation for the example of Table 2. Let the tuple K(B) of the ROM contents be
confined to the first twelve elements in the test synthesis. The cell with address 00001 is
undiagnosable. In this case the cycling becomes possible if in the realization of condition (2) provision
is made for a checkable transition from the address 01101 to 00001. Table 2 shows directly that such
a transition exists if, with account for the checking rule (5) for predicting signatures, and depending
on the selected polynomial P(x) for generating signatures, the test tuples K(A) and K(B) are
supplemented with subsequent three (boldfaced) elements (P(x) = x*+x3+1), or with four (marked
by asterisks) elements (P(x) = x3+x+1). As a result, the set becomes cyclically enumerable.
Moreover, as is seen from Table 2, there can be several cyclically enumerable tests and they are
characterized by different lengths (redundancy). The question of redundancy is decided at the stage
when the operation # and the polynomials G(x) and P(x) are chosen. Neither is it excluded that the
generation polynomial G(x) can be irreducible.

Table 1
K(B) K(A) K(B)#K(A) K(sg(B#A)) K(sg(B#A))
bsbsb2b1 asa4a3a2a1 G(x) =x>+x2+1 | P(x) =x*+x3+1 | P(x) =x3+x+1
0000 00001 00001 0001 001
0001 00011 00010 0010 011
0001 00100 00101 0101 110
0011 01001 01010 1011 101
1111 11010 10101 0110 011
1110 00101 01011 1010 100
1100 11011 10111 0100 000
0101 01011 01110 1111 010
1100 10001 11101 1111 101
1000 10011 11011 1001 001
0100 10010 10110 0101 001
0001 01101 01100 1101 001
0111 11111* 11000 1010 Oil
0100 10101* 10001 0010 100
0001 00010* 00011 0011 010
1011 01100 00111 0111 101
1000 00111 01111 1110 011
1001 10110 11111 1101 110
0110 11000 11110 1100 111
1000 10100 111000 1110 100
0101 11100 11001 1011 010
1010 11001 10011 0000 111
1110 01000 00110 0110 100
0010 01111 01101 1100 000
1101 10111 11010 1000 000
1010 11110 10100 0111 010
0011 01010 01001 1000 111
0010 10000 10010 0001 110
0010 00110 00100 0100 111
0110 01110 01000 1001 110
1101 11101* 10000 0011 101

The importance of any built-in checking method increases if, along with the solution of the
checking problem, the method possesses some additional potentialities. In particular, we will show
that the suggested signature method for checking the state of a programmed ROM makes it possible,

78

in principle, to solve the regeneration (recovery) problem for lost data at the time when the read
operation is checked. The solution of this problem is based on the above-mentioned signature
prediction principle expressed in the form of the signature checking rule (5) and the proof of the
following assertions.

Theorem 2. If the numbers A, and their signatures sgA; are elements of the field GF(2™), then
the result of the summation Ai @ sgsgA, is the zero element of this field in the case when the
generating polynomial for signatures has the form P(x) = x™+ x™1+1.

Proof. Because, [6]

sgAi (X) = M Ai (x)modP(x)],

where M 1 is the inversion of the matrix M of nonzero coefficients of the irreducible primitive
polynomial for generating signatures, we have

sgsgAi (x) = M 1 {M A (x)modP(x)]} modP(x)= M ~IM 1[Ai (xX)modP(x)].
Therefore the relation
M M A (x)modP(x)] = Ai (x).

can hold if for degP(x) > deg Ai (x) the product M ~*M ~1is a unit matrix. The condition that the
numbers and their signatures belong to the field GF(2™) implies that the order of this matrix is equal
to m-1.

Theorem 3. An algorithmically solvable (cyclically solvable) test for an ROM with
organization N x m is recovering if the operation # is the modulo two addition and the polynomial
for generating signatures has the form P(x) = x™+ x™1+1.

Proof. Based on the rule (5) for ROMs, Definition 1 implies that in each i-th access cycle the
standard signature sg(Ai+1 # Bi+1) is predicted, and in the (i+l)-th cycle the current value of the
signature sg(A'i+1 # Bi+1) is determined from the test address A'i.1 € K(A). Therefore, as is known, the
superposition

SQ(Ai+1 # Bi+1)s = SQA%i+1 +1 # SgBSi+1
is possible if the operation is the modulo two addition [3]. Hence, we have
Sg(Ai+1 @ Bis1)s @ sgA'i+1= sgB®i1, (6)

and, in view of the assertion of Theorem 2, the code of the number B®i+1 can be recovered (sgsgB®i+1
= BSi+1) only in the case when degP(x) > degBSi+1and P(x) = x™+x™ 1+ I,

Recovery. The proof of Theorem 3 implies that at the time of the checking (comparison) we
have sg(Ai+1 @ Bi+1)s = 0100 for the standard signature, i.e., it is the value of the right-hand side of
the inequality. Because the value of the current chosen address A'Yi+1= 11011 is known, the signature
sg Ali:1= sg(1101) = 1001 is also known. Therefore, based on relation (6), we have sgB®i+1 = 0100 &
1001 = 1101, and Theorem 2 implies sgsgB®i+1 = sg[sg(l 101)] = 1100. i.e., the true contents of the
cell with address Ai+1 = 11011 is recovered.

Let us estimate hardware expenditures required to perform the recovery of the contents of ROM
cell as compared to the implementation of the checking alone (realization of the rule (5)) and let us
find out, for instance, how these expenditures relate for the above- mentioned ROM with organization
32 X 4 in the case when Hamming’s code (information redundancy for recovery) is used.

According to the assertion of Theorem 3, the checking rule (5) must have the form

79

sg(A'i+1 @ Bi+1) SQH[(A®B)i+(A®B)i] ® rmlYXi-1 9 (e ® by):l, (7)

£=\56,1}
where € = {0,1} is the checking result: 1 — error is not detected; and 0 — error is detected; n is the
number of digits in the representation of the number A @ B.

Since the right-hand side of (7) is the standard signature for the access cycle i + | predicted in
the i-th access cycle:

sg(Ai+1 @ Bi+1)s= SgAi+1 @D SgBSi+1)s,
it follows from (6) and (7) that
sgB%i+1 =5g(Ai+1DBi+1)sDsgAj+1=
=sgH[(A®B)i+(A®B)1®rm[Xi-1 ga(aa ® be)1® SgA, 8
Formula (7) implies that for the zero contents Bi+1 we have

sgAi+1=sg H (Ai+A)Brm[XG=1 Jaal- 9
Therefore, based on the assertion of Theorem 2, for € = 0 the substitution of (9) into (8) results

BSi+1= sg{sg A [(ADB)i+(A®B)i] &

Orm[Xa=19a(ae ® bo)|®sgH (A; + A)Orm[Le=1 Jaal =

= sg{sg(Ain1 @ Bis1)s®sgH [(ADeB)i+(ABeB) @1 [Xa=1 9u (2. Beb:)]}- (10)

The comparison of (7) and (10) shows that to recover the information distorted in the cell with
address Ai+1 the checking module synthesized in accordance with (7) must be supplemented with
two-input logic elements AND whose number is determined by the word length m of the memory
cell. Besides, according to (10), to the output of the comparison unit for the standard (predicted) and
current signatures an additional combination unit (a signature operator sg before the curly bracket)
for producing signatures with the same number m of inputs and outputs must be attached. As is known
[5], for the polynomial P(x) = x*+ x3+1 and m=4 this unit must implement the system of Boolean
functions Y = ya y3 Y2 Y1 Where ya= Sa = bs; y3= 3= b3; Y2 =S2=Db2; y1 = S4@® S1= Db1; S = 54535251
is the code of the result of the modulo two addition (the operation in curly brackets in (10)); and b;
are the digits of the recovered number B%i+1. The weights of digits in the code of the number S increase
from right to left.

Thus, the unit for producing sgsgB®i+1 contains three one-digit communication lines and one
two-input modulo two adder.

For the above case of four-digit ROM with organization 32x4 there exists a Hamming (8, 4)
code [4] capable of correcting all single errors and detecting all double errors (the minimum code
distance is equal to 4). In this case the four data digits are supplemented with the same number of
checking digits. Consequently, when data redundancy is introduced for checking and recovering only
single errors based on Hamming’s (8, 4) code, it is required to pass from 32x4 to 32x8 ROM, i.e., a
100% additional ROM capacity is needed to store the Hamming-coded data.

Thus, in contrast to the well-known signature checking methods for ROM devices (e.g., see [7],
[8]), the signature checking of ROM based on the predictability principle for the checking signature
in the (i+ I)-th read cycle with account of the value of the cell address determined by the signature of
the result read in the foregoing i-th cycle requires no additional memory for storing the standard

80

signatures. In this case the originally stored data can be recovered without using the information
redundancy.

REFERENCES

1. B. M. Kagan, Elektronnye vychislitelnye mashiny i sistemy (Electronic computers and
computing systems).— Moscow: Energiya, 1979.

2. GOST 20911-89. Tekhnicheskaya diagnostika. Terminy i opredeleniya (Standards 20911-89.
Technical diagnostics. Terminology and definitions).—Moscow: Izd-vo standartov, 1989.

3. O. P. Kuznetsov and G. M. Adelson-Velskiy, Diskretnaya matematika dlya inzhenerov
(Discrete mathematics for engineers).—Moscow: Energiya, 1980.

4. P. Blayhoot, Teoriya i praktika kodov konrtoliruyushchikh oshibki (Theory and application of

error-controlling codes).— Moscow: Mir, 1986.

V. N. Tupkalo, Avtomatika i Telemekhanika.— No. 1: 167-172.-1993.

V. N. Tupkalo, Electronic Modeling 10, No. | .—1992.

7. 1. V. Ognev and K. F. Sarychev, Nfidezhnost zaporninayushchikh ustroistv (Reliability of
storage devices).—Moscow: Radio i Svyaz, 1988.

oo

B. H. TynkaJjio
IPOBEPKA IOJINUCH II3Y MOAYJEN

IIpeonooicen cnocob obecneuenus OmKa30yCmMoOUYUBOCMU MOOYael NaAMAMU MOJLKO OJisl YMeHUs
(I13Y) nHa ocrose npunyuna NPOSHO3UPOBAHUS KOHMPOTILHOU CUSHAMYPbL 8 KAHCOOM YUKIe 00CMyna
Kk namamu. Haiioenvi Heobxooumvle ycnosusi 0ns pewieHus npoobiembl 60CCMAHOBNEHUS OJls
NOMEPSIHHBIX OAHHBIX B0 BPEMSL NPOBEPKU ONEPAYUU YMEHUSL.

Baosicnocmu 1106020 6cmpoennoco memooa nposepku 6o3pacmaem, eciu HaApsoy ¢ peuleHuem
npobnemvl nposepku memood obraoaem HeKOMOPbIMU OONOIHUMETbHBIMU BO3MONCHOCMAMU. B
cmamve NOKA3AHO, 4MO Hpeoidzaemvlii MemoO HOOnuUcU Ol NPOBEPKU COCMOAHUS
sanpoepammuposannozo 113y nozeonsiem, 6 npunyune, pewiums npodIeMy pecenepayuul
(60ccmanosinens) 0 ROMEPSIHHBIX OAHHbIX 8 MOMEHM NPOBEPKU ONepayuu YmeHusl.

Pewenue smoii npobremvt 0OCHOBAHO HA BLIUEYROMSAHYMOM NPUHYUNE NPEOCKA3AHUSI NOONUCEL,
BbIPANCEHHOM 8 (hopMe Npasula NPOBepKU NOONUCU.

Knroueswvle cnoea: mooynu namamu, noOnuce, npoeepra pabomol, NPOSHO3UPOBAHUE, CUCTEMbl
yugpposozo ynpasienus.

B. M. TynkaJsuo
IEPEBIPKA IIIJAINXACH I13Y MOJAYJIIB

3anpononosarno cnocid 3abe3neueHus 6i0MOBOCMIUIKOCMI MOOYII8 Nam'ami milbKu Ol YUMAHHSL
(I13Y) na ocnosi npunyuny npoeHo3yeanHs KOHMPOIbHOI CUSHAMYPU 8 KOHCHOMY YUK 00CMYNY 00
nam'ami. 3natioeno HeoOXiOHi yMO8U OISl GUPIULEHHS NPOOaeMU 8IOHOBNEHHSL OISl BMPAYEHUX OAHUX
nio wac nepegipku onepayii YumaHHs.

Baocnusicmov 6y0v-aKx020 60Y008aH020 Memooy nepesipKu 3p0Cmac, aKujo nopsio 3 GUPIUUEHHAM
npobdeMu nepesipKu Memoo 80a00i€ 0esiKUMU O00AMKOBUMU MONCIUBOCIAMU. Y cmammi NOKa3awo,
WO NPONOHOBAHULL MemoO nionucu 0is nepesipku cmawny 3anpocpamosanoco 113V 0ozeonse, 6
npuHyuni, eupiwiumu npoonemy pezeHepayii (8i0HO6NEHHs) 01 6MPAYEHUX OAHUX 8 MOMEHM
nepegipku onepayii YumamHsi.

Bupiwenns yiei npobnemu epynmyemvcsa Ha 8uye32a0aHomy npuHyuni nepeodbadenns nionucis,
supasicenuM y popmi npasuia nepesipku nionucy.

Kniouosi cnosa: mooyni nam'asmi, nionuc, nepesipka podOOmu, NpPOSHO3Y8AHHS, CUCHEMU
Yuppo6o2o ynpasiinmsi.

Penensent: 1.1.H., mpodecop AzapckoB B.M., HAY

81

