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SIGNATURE CHECKING OF ROM MODULES 

 

 

A method is proposed for ensuring the fault tolerance of read-only memory modules (ROMs) 

based on the principle of predicting a control signature in each access cycle to memory. The 

necessary conditions were found for solving the recovery problem for lost data during the scan of the 

read operation. 

The importance of any built-in verification method increases, if along with the solution of the 

verification problem the method has some additional capabilities. The article shows that the proposed 

signature method for checking the status of the programmed ROM allows, in principle, to solve the 

problem of regeneration (recovery) for lost data at the time of checking the read operation. 

The solution to this problem is based on the aforementioned principle of signature prediction, 

expressed in the form of a signature verification rule. 

Key words: memory modules, signature, work check, forecasting, digital control systems. 

 

The need in fault-tolerant digital control systems (DCS) of different purpose calls for searching 

new approaches to solving the problem of checkability of DCS functional units and, in particular, 

memory modules. 

Depending on the type of access operations the DCS memory units are classified as random-

access memory (RAM) modules and read-only memory (ROM) modules. For RAMs there exists an 

efficient hardware-microprogram method for checking the state during the operation pauses whose 

essence reduces to preliminary reading and storing of a cell’s contents with its subsequent inversion 

and with repetition of the write-read cycle to compare the results [1]. This method is inapplicable for 

ROM because in this case the possibility of the write operation is excluded. 

From the standpoint of functional representation of models for checking objects, a DCS ROM 

is a state checking (diagnostics) object with transfer function Ψ performing a mapping Ψ: K(A) → 

K(B), where K(A) is a tuple of cell addresses and K(B) is a tuple of the cells’ contents. The mapping 

should be regarded here as being many-valued (surjective) because a DCS ROM may contain 

different cells with the same contents. Therefore the combination of the input sequence in the form 

K(A) and the output sequence in the form K(B) cannot be interpreted as ROM test in the general case. 

The set A of the ROM addresses is always finite, and under sampling it can be represented by 

N! (N is the number of memory cells) tuples of the same power, which are ordered. Therefore the 

unitariness (determinism) principle for checking will hold if, in accordance with the well-known 

concept in [2], the test is formed as a pair of tuples {K(A), K(A#B)}, where # is a superposition 

(composition) operation for the sets of addresses A and contents B such that the mapping 

 

Ψ#:K(A) →K(A#B) = K(A)#K(B).                                         (1) 

 

Problem statement. In view of condition (1), the problem of synthesizing a test for checking 

the states of a programmed ROM module can be stated in the following way: given the contents B of 

the ROM cells, it is required to synthesize an input test action 𝐾∗(𝐴) using the given set A of ROM 

addresses such that the function Ψ# for the established (chosen) operation # is algorithmically 

computable (a computing algorithm for the function Ψ# must necessarily exist [3]). 
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It should be noted that in the context of the general problem of checking the states of the ROM 

during the pauses in its operation the requirement of algorithmical computability of the function Ψ# 

must be regarded as being only a necessary but not sufficient condition for test synthesis because the 

mapping (1) preassigns no principle for forming the template. Therefore, proceeding from the 

requirement that the unitariness principle should hold for the functional checking, we state a sufficient 

condition for synthesizing the ROM test in the following way: if, in accordance with (1), the function 

Ψ# is algorithmically computable, then checking the ROM state can be reduced to checking a 

characteristic feature of the current (i+l)-th n-digit binary vector (A # B)i+1 of the tuple K(A # B) by 

using the characteristic features of the directly preceding i-th vector (A # B)i (i = 1, 2, .., are the 

memory access cycles) if the functional relationship 

 

(A#B)i+l = Ψ#(A#B)i.                                                 (2) 

 

corresponds to the function computing algorithm. 

We will prove that, in principle, for any contents of ROM cells the condition (2) is satisfied 

guaranteeing the test checkability of the ROM according to the principle of prediction of checked 

binary vectors. To this end we use the fact that the number of memory cells in the existing and newly 

elaborated ROMs is a multiple of a power of two. Moreover, based on the notion of "algorithmic 

solvability" [3] known from the algorithm theory we introduce the following definition. 

Definition 1. An ROM test {𝐾∗(𝐴); 𝐾∗(𝐴#𝐵)} is said to be (algorithmically) solvable if for 

its tuple 𝐾∗(𝐴#𝐵) there exists a formation algorithm coinciding with the computing algorithm for the 

function (2). In this case the tuple 𝐾∗(𝐴) is called a solvable test action. 

Theorem 1. An ROM test is algorithmically solvable if the number of test words in the tuple 

K(A) is equal to | K(A) |  = 2n–1, where n = log2N and N is the number of memory cells. 

Proof. First, it is necessary to prove that in the context of condition (2) there always exists a 

composition operation # such that the mapping (1) is one-to-one. Indeed, since the tuple K(A) is 

strictly ordered, the tuple K(A # B) = K(A) # K(B) is also strictly ordered for any cell contents, if # 

is the logical operation on binary numbers (the concatenation operation ∇). For example, if Ai = 

0110111 and Bi = 10101, then Ai # Bi = Ai ∇ Bi = 011011110101. The requirement that the mapping 

(l) be injective implies that |K(A)| = |K(A) # K(B)| = 2n. Therefore, according to Definition 1, the 

tuple K(A) is a solvable test action if for the tuple K(A) # K(B) there is an algorithm that gives the 

answer to the question whether Aj belongs to the tuple K(A) or not for any of the numbers Aj ∈ K(A). 

As is known from coding theory, such an algorithm exists for a sequence of numbers formed with the 

help of a shifting register with feedback (in the form of polynomial number generators) [4]. In this 

case the maximum number of different n-digit numbers is generated when the feedback is described 

by an irreducible primitive polynomial G(x) = gnxn+gn-1xn–1+…+ g1x+1 of degree n, i.e., 

|K(A)| =2n–1 (a zero number in the tuple K(A # B) is excluded). 

Based on Theorem 1, we can conclude that the method for solving the problem of checking the 

state of a programmed ROM must involve the following two consecutive synthesis stages: when data 

are written in the ROM, the relation (1) is fulfilled with condition Bj # Aj = 00...0 ∉ K(A # B) being 

satisfied; and, with account of the selected polynomial G(x) for generating a test of degree n = log2N, 

the set A # B is ordered so that the tuple K(A # B) is predictably checkable when checking the state 

of the programmed ROM, i.e., the algorithmic computability of the function (2) is ensured. In this 

case the resulting tuple K(A) is the tuple 𝐾∗(𝐴). When these synthesis stages are realized, the 

programmed ROM is regarded as being predictably checkable. 

The proof of Theorem 1 implies that since the algorithmically solvable function for generating 

the test with |K(A)| = 2n–1 is a known function generating binary numbers with the aid of a shift 

register toward higher digits with modulo-two adder feedback described by an irreducible primitive 

polynomial G(x) [4], the general relationship (2) for an n-digit binary notation satisfies the recurrence 

relation 

 

(A#B)i+1 =2(A#B)i ⊕ r[n][∑ 𝑔𝛼(𝑎𝛼 # 𝑏𝛼)𝑖
𝑛
𝛼=1 ],                                       (3) 
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where (i + 1) and i are, respectively, the subsequent and preceding shift cycles, r[n] is an n-digit 

constant with unity only in the least significant digit, gα are the coefficients in nonzero terms of the 

polynomial G(x) for generating binary numbers, and (aα # bα)i is the value of the a-th digit of the 

number (A # B)i. 

In view of the fact that the Boolean equivalent of the arithmetic function for adding two 

identical numbers R has the form 2R = R⨁R⨁H(R+R) = H(R+R) [5] and H(R+R) is the Boolean 

operation (function) producing numbers whose code characterizes the positions of carry unities in the 

addition of identical numbers, we finally obtain the following expression for (3) 

 

(A#B)i+1 = 𝐻̂[(A#B)i+(A#B)i] ⨁ r[n][∑ 𝑔𝛼(𝑎𝛼 # 𝑏𝛼)𝑖
𝑛
𝛼=1 ],                   (4) 

 

where 𝐻̂[(A#B)i+(A#B)i] is obtained by truncating the code of the number H[(A#B)i+(A#B)i] on 

the left (discarding the highest-order digit). 

Therefore under the transition from the numbers in (4) to their signatures sg the signature 

checking rule for the state of a predictably checkable ROM is written as 

 

sg(A#B)i+1 =sg𝐻̂[(A#B)i+(A#B)i] ⨁ r[n][∑ 𝑔𝛼(𝑎𝛼 # 𝑏𝛼)𝑖
𝑛
𝛼=1 ].                   (5) 

 

An example demonstrating the essence of the stages in the suggested technique for synthesizing 

an algorithmically solvable test (see Definition 1) for checking the states of a programmed ROM with 

organization 32 X 4 is presented in Tables 1 and 2. It is assumed that the tuple elements in Table 2 

follow from top to bottom. The role of the operation # is played by the modulo two addition of two 

digits with the same polynomial weight. 

Table 1 

Bj  Aj Bj # Aj Bj  Aj Bj # Aj 
0000 00001 00001 0111 11111 11000 

0001 00010 00011 1000 00111 01111 

0001 00011 00010 1000 10011 11011 

0001 00100 00101 1000 10100 11100 

0001 01101 01100 1001 10110 11111 

0010 00110 00100 1010 11001 10011 

0010 01111 01101 1010 11110 10100 

0010 10000 10010 1011 01100 00111 

0011 01010 01001 1100 10001 11101 

0011 01001 01010 1100 11011 10111 

0100 10010 10110 1101 11101 10000 

0100 10101 10001 1101 10111 11010 

0101 01011 01110 1110 00101 01011 

0101 11100 11001 1110 01000 00110 

0110 01110 01000 1111 11010 10101 

0110 11000 11110    

 

A fundamental property of an algorithmically solvable test {𝐾∗(𝐴); 𝐾∗(𝐴# 𝐵)} is that it can 

cycle an unbounded number of times and that the tuple 𝐾∗(𝐴) must not necessarily return to the initial 

address after an interruption of the diagnosing process (owing to the end of a pause in the ROM 

operation). 

Definition 2. A test of a predictably checkable ROM is said to be enumerable if  

 

|K(A)| = 2n–1. 

 

The notion of an enumerable test (enumerable set [3]) relates to a typical situation when the 

amount and the values of the numbers meant for storage make it possible to synthesize the test without 
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cycling. Such a test does not permit the diagnosis of the first cell addressed by the tuple K(A). We 

will illustrate this situation for the example of Table 2. Let the tuple K(B) of the ROM contents be 

confined to the first twelve elements in the test synthesis. The cell with address 00001 is 

undiagnosable. In this case the cycling becomes possible if in the realization of condition (2) provision 

is made for a checkable transition from the address 01101 to 00001. Table 2 shows directly that such 

a transition exists if, with account for the checking rule (5) for predicting signatures, and depending 

on the selected polynomial P(x) for generating signatures, the test tuples K(A) and K(B) are 

supplemented with subsequent three (boldfaced) elements (P(x) = x4+x3+1), or with four (marked 

by asterisks) elements (P(x) = x3+x+1). As a result, the set becomes cyclically enumerable. 

Moreover, as is seen from Table 2, there can be several cyclically enumerable tests and they are 

characterized by different lengths (redundancy). The question of redundancy is decided at the stage 

when the operation # and the polynomials G(x) and P(x) are chosen. Neither is it excluded that the 

generation polynomial G(x) can be irreducible. 

Table 1 

K(B) 

b4b3b2b1 

K(A) 

a5a4a3a2a1 

K(B)#K(A) 

G(x) = x5+x2+1 

K(sg(B#A)) 

P(x) = x4+x3+1 

K(sg(B#A)) 

P(x) = x3+x+1 

0000 00001 00001 0001 001 

0001 00011 00010 0010 011 

0001 00100 00101 0101 110 

0011 01001 01010 1011 101 

1111 11010 10101 0110 011 

1110 00101 01011 1010 100 

1100 11011 10111 0100 000 

0101 01011 01110 1111 010 

1100 10001 11101 1111 101 

1000 10011 11011 1001 001 

0100 10010 10110 0101 001 

0001 01101 01100 1101 001 

0111 11111* 11000 1010 Oil 

0100 10101* 10001 0010 100 

0001 00010* 00011 0011 010 

1011 01100 00111 0111 101 

1000 00111 01111 1110 011 

1001 10110 11111 1101 110 

0110 11000 11110 1100 111 

1000 10100 111000 1110 100 

0101 11100 11001 1011 010 

1010 11001 10011 0000 111 

1110 01000 00110 0110 100 

0010 01111 01101 1100 000 

1101 10111 11010 1000 000 

1010 11110 10100 0111 010 

0011 01010 01001 1000 111 

0010 10000 10010 0001 110 

0010 00110 00100 0100 111 

0110 01110 01000 1001 110 

1101 11101* 10000 0011 101 

 

The importance of any built-in checking method increases if, along with the solution of the 

checking problem, the method possesses some additional potentialities. In particular, we will show 

that the suggested signature method for checking the state of a programmed ROM makes it possible, 
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in principle, to solve the regeneration (recovery) problem for lost data at the time when the read 

operation is checked. The solution of this problem is based on the above-mentioned signature 

prediction principle expressed in the form of the signature checking rule (5) and the proof of the 

following assertions. 

Theorem 2. If the numbers Ai, and their signatures sgAi are elements of the field GF(2m), then 

the result of the summation Ai ⨁ sgsgAi, is the zero element of this field in the case when the 

generating polynomial for signatures has the form P(x) = xm+ xm–1+1. 

Proof. Because, [6] 

 

sgAi (x) = M –1[Ai (x)modP(x)], 

 

where M –1 is the inversion of the matrix M of nonzero coefficients of the irreducible primitive 

polynomial for generating signatures, we have 

 

sgsgAi (x) = M –1 {M –1[Ai (x)modP(x)]} modP(x)= M –1M –1[Ai (x)modP(x)]. 

 

Therefore the relation 

 

M –1M –1[Ai (x)modP(x)] = Ai (x). 

 

can hold if for degP(x) > deg Ai (x) the product M –1M –1 is a unit matrix. The condition that the 

numbers and their signatures belong to the field GF(2m) implies that the order of this matrix is equal 

to m–1. 

Theorem 3. An algorithmically solvable (cyclically solvable) test for an ROM with 

organization N × m is recovering if the operation # is the modulo two addition and the polynomial 

for generating signatures has the form P(x) = xm+ xm–1+1. 

Proof. Based on the rule (5) for ROMs, Definition 1 implies that in each i-th access cycle the 

standard signature sg(Ai+1 # Bi+1) is predicted, and in the (i+l)-th cycle the current value of the 

signature sg(At
i+1 # Bi+1) is determined from the test address At

i+1 ∈ K(A). Therefore, as is known, the 

superposition 

 

sg(Ai+1 # Bi+1)s = sgAs
i+1 +1 # sgBs

i+1 

 

is possible if the operation is the modulo two addition [3]. Hence, we have 

 

sg(Ai+1 ⨁ Bi+1)s ⨁ sgAt
i+1= sgBs

i+1 ,                                                             (6) 

 

and, in view of the assertion of Theorem 2, the code of the number Bs
i+1  can be recovered (sgsgBs

i+1 

= Bs
i+1) only in the case when degP(x) > degBs

i+1 and P(x) = xm+xm–1+ l. 

Recovery. The proof of Theorem 3 implies that at the time of the checking (comparison) we 

have sg(Ai+1 ⨁ Bi+1)s = 0100 for the standard signature, i.e., it is the value of the right-hand side of 

the inequality. Because the value of the current chosen address At
i+1= 11011 is known, the signature 

sg At
i+1= sg(1101) = 1001 is also known. Therefore, based on relation (6), we have sgBs

i+1 = 0100 ⨁ 

1001 = 1101, and Theorem 2 implies sgsgBs
i+1 = sg[sg(l 101)] = 1100. i.e., the true contents of the 

cell with address Ai+1 = 11011 is recovered. 

Let us estimate hardware expenditures required to perform the recovery of the contents of ROM 

cell as compared to the implementation of the checking alone (realization of the rule (5)) and let us 

find out, for instance, how these expenditures relate for the above- mentioned ROM with organization 

32 × 4 in the case when Hamming’s code (information redundancy for recovery) is used. 

According to the assertion of Theorem 3, the checking rule (5) must have the form  
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sg(At
i+1 ⨁ Bi+1) =⏟

𝜀={0,1}

 sg𝐻̂[(A⨁B)i+(A⨁B)i] ⨁ r[m][∑ 𝑔𝛼(𝑎𝛼 ⨁ 𝑏𝛼)𝑖
𝑛
𝛼=1 ],          (7) 

 

where 𝜀 = {0,1} is the checking result: 1 – error is not detected; and 0 – error is detected; n is the 

number of digits in the representation of the number A ⨁ B. 

Since the right-hand side of (7) is the standard signature for the access cycle i + l predicted in 

the i-th access cycle: 

 

sg(Ai+1 ⨁ Bi+1)s= sgAi+1 ⨁ sgBs
i+1)s, 

 

it follows from (6) and (7) that 

 

sgBs
i+1 =sg(Ai+1⨁Bi+1)s⨁sgAt

i+1= 

 

=sg𝐻̂[(A⨁B)i+(A⨁B)i]⨁r[m][∑ 𝑔𝛼(𝑎𝛼 ⨁ 𝑏𝛼)𝑖
𝑛
𝛼=1 ]⨁ sgAt

i+1,            (8) 

 

Formula (7) implies that for the zero contents Bi+1 we have 

 

sgAt
i+1=sg𝐻̂(Ai+Ai)⨁r[m][∑ 𝑔𝛼𝑎𝛼

𝑛
𝛼=1 ].               (9) 

 
Therefore, based on the assertion of Theorem 2, for 𝜀 = 0 the substitution of (9) into (8) results 

in 

Bs
i+1= sg{sg𝐻̂[(A⨁B)i+(A⨁B)i] ⨁ 

 

⨁r[m][∑ 𝑔𝛼(𝑎𝛼 ⨁ 𝑏𝛼)𝑛
𝛼=1 ]⨁sg𝐻̂(𝐴𝑖 + 𝐴𝑖)⨁r[m][∑ 𝑔𝛼𝑎𝛼

𝑛
𝛼=1 ] = 

 

= sg{sg(Ai+1 ⨁ 𝐵i+1)s⨁sg𝐻̂[(𝐴⨁𝜀𝐵)i+(𝐴⨁𝜀𝐵)𝑖]⨁𝑟[𝑚][∑ 𝑔𝛼(𝑎𝛼⨁𝜀𝑏𝛼)𝑛
𝛼=1 ]}.                 (10) 

 

 

The comparison of (7) and (10) shows that to recover the information distorted in the cell with 

address Ai+1 the checking module synthesized in accordance with (7) must be supplemented with 

two-input logic elements AND whose number is determined by the word length m of the memory 

cell. Besides, according to (10), to the output of the comparison unit for the standard (predicted) and 

current signatures an additional combination unit (a signature operator sg before the curly bracket) 

for producing signatures with the same number m of inputs and outputs must be attached. As is known 

[5], for the polynomial P(x) = x4+ x3+1 and m=4 this unit must implement the system of Boolean 

functions Y = y4 y3 y2 y1 where y4= s4 = b4; y3= s3= b3; y2 =s2=b2; y1 = s4⨁ s1= b1; S = s4s3s2s1 

is the code of the result of the modulo two addition (the  operation in curly brackets in (10)); and bj 

are the digits of the recovered number Bs
i+1. The weights of digits in the code of the number S increase 

from right to left. 

Thus, the unit for producing sgsgBs
i+1 contains three one-digit communication lines and one 

two-input modulo two adder. 

For the above case of four-digit ROM with organization 32×4 there exists a Hamming (8, 4) 

code [4] capable of correcting all single errors and detecting all double errors (the minimum code 

distance is equal to 4). In this case the four data digits are supplemented with the same number of 

checking digits. Consequently, when data redundancy is introduced for checking and recovering only 

single errors based on Hamming’s (8, 4) code, it is required to pass from 32×4 to 32×8 ROM, i.e., a 

100% additional ROM capacity is needed to store the Hamming-coded data. 

Thus, in contrast to the well-known signature checking methods for ROM devices (e.g., see [7], 

[8]), the signature checking of ROM based on the predictability principle for the checking signature 

in the (i+ l)-th read cycle with account of the value of the cell address determined by the signature of 

the result read in the foregoing i-th cycle requires no additional memory for storing the standard 
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signatures. In this case the originally stored data can be recovered without using the information 

redundancy. 
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В. Н. Тупкало 

ПРОВЕРКА ПОДПИСИ ПЗУ МОДУЛЕЙ 

Предложен способ обеспечения отказоустойчивости модулей памяти только для чтения 

(ПЗУ) на основе принципа прогнозирования контрольной сигнатуры в каждом цикле доступа 

к памяти. Найдены необходимые условия для решения проблемы восстановления для 

потерянных данных во время проверки операции чтения. 

Важность любого встроенного метода проверки возрастает, если наряду с решением 

проблемы проверки метод обладает некоторыми дополнительными возможностями. В 

статье показано, что предлагаемый метод подписи для проверки состояния 

запрограммированного ПЗУ позволяет, в принципе, решить проблему регенерации 

(восстановления) для потерянных данных в момент проверки операции чтения.  

Решение этой проблемы основано на вышеупомянутом принципе предсказания подписей, 

выраженном в форме правила проверки подписи. 

Ключевые слова: модули памяти, подпись, проверка работы, прогнозирование, системы 

цифрового управления. 

 

В. М. Тупкало 

ПЕРЕВІРКА ПІДПИСИ ПЗУ МОДУЛІВ 

Запропоновано спосіб забезпечення відмовостійкості модулів пам'яті тільки для читання 

(ПЗУ) на основі принципу прогнозування контрольної сигнатури в кожному циклі доступу до 

пам'яті. Знайдено необхідні умови для вирішення проблеми відновлення для втрачених даних 

під час перевірки операції читання. 

Важливість будь-якого вбудованого методу перевірки зростає, якщо поряд з вирішенням 

проблеми перевірки метод володіє деякими додатковими можливостями. У статті показано, 

що пропонований метод підписи для перевірки стану запрограмованого ПЗУ дозволяє, в 

принципі, вирішити проблему регенерації (відновлення) для втрачених даних в момент 

перевірки операції читання. 

Вирішення цієї проблеми грунтується на вищезгаданому принципі передбачення підписів, 

вираженим у формі правила перевірки підпису. 

Ключові слова: модулі пам'яті, підпис, перевірка роботи, прогнозування, системи 

цифрового управління. 
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