METHOD OF GROWING MICROALGAE IN EDITOR UTILIZATION OF GASES OF SOLID OXIDE FUEL CELLS

N. Burega

Abstract. The analysis of the training environment and the cultivation of algae cultivation methods proposed design of a flat, vertical fotobioreaktor of industrial type.

Key words: fotoreaktor, culture medium, carbon dioxide, microalgae, Chlorella vulgaris.

УДК 535.3

ДІЕЛЕКТРИЧНІ ВЛАСТИВОСТІ МАТРИЧНИХ ДИСПЕРСНИХ СИСТЕМ ІЗ ДВОШАРОВИМИ ВКЛЮЧЕННЯМИ В НАБЛИЖЕННІ МАКСВЕЛЛ-ГАРНЕТТА

С. В. Шостак, кандидат фізико-математичних наук e-mail: nni.elektrik@gmail.com

Анотація. Розраховано діелектричні втрати в матричних дисперсних системах із двошаровими кульовими включеннями. У наближенні Максвелл-Гарнетта проведено детальний аналіз залежностей ефективної діелектричної проникності як від частоти зовнішнього поля, так і від параметрів системи.

Ключові слова: діелектричні втрати, матричні дисперсні системи, ефективна діелектрична проникність.

Дослідженню діелектричних втрат (ДВ) у матричних дисперсних системах (МДС) присвячена значна кількість робіт [1–8]. У деяких із цих робіт досліджено частотні залежності дійсної та уявної частини ефективної діелектричної проникності таких систем залежно від їх фізико-хімічних параметрів, причому в основному вивчалися (МДС) із діелектричною матрицею з включеннями різної форми та природи.

Основною задачею щодо знаходження ДВ у МДС є розрахунок частотної залежності уявної частини ефективної діелектричної проникності $\operatorname{Im} \widetilde{\varepsilon}(\omega)$ у таких системах з урахуванням їх складу і структури та подальше обчислення величини ДВ за формулою:

$$W = \frac{1}{4\pi} \int_{\infty}^{\infty} \omega \left[\widetilde{\varepsilon}^{*}(\omega) |\mathbf{E}_{\omega}|^{2} + \widetilde{\mu}^{*}(\omega) |\mathbf{H}_{\omega}|^{2} \right] d\omega, \qquad (1)$$

де \mathbf{E}_{ω} і \mathbf{H}_{ω} – Фур'є компоненти зовнішніх полів $\mathbf{E}(r,t)$ і $\mathbf{H}(r,t)$; $\tilde{\varepsilon}''$ і $\tilde{\mu}''$ – відповідно, уявні частини ефективних діелектричної та магнітної проникності МДС.

Мета досліджень – розрахунок частотних залежностей ефективної діелектричної проникності для МДС із двошаровими кульовими включеннями із провідною анізотропною плівкою.

Матеріали та методика досліджень. У роботі було використано механізми й закономірності поглинання та розсіяння електромагнітного випромінювання з двошаровими кульовими включеннями.

Результати досліджень. Методи розрахунку поглинання електромагнітного випромінювання (ЕМВ) у матричних дисперсних системах (МДС) із багатошаровими включеннями (у нашому випадку двошарові) ми продемонструємо на такій модельній системі [9]: двошарові сферичні частинки SiO_2 (радіусу r) з плівкою адсорбованої води завтовшки h = R - r, розміщені в матриці з діелектричною проникністю ε_1 (рис.1).

Рис. 1. Модель неоднорідної кулі, покритої адсорбованою плівкою з тензором діелектричної проникності

$$\hat{\varepsilon}_{2} = \begin{pmatrix} \varepsilon_{n}, 0, 0\\ 0, \varepsilon_{t}, 0\\ 0, 0, \varepsilon_{t} \end{pmatrix}$$

Діелектрична проникність $SiO_2 - \varepsilon_3$ (надалі ε_3 вибиралася рівною 1,5), концентрація включень *N*, а діелектрична проникність плівки має вигляд тензора:

$$\hat{\varepsilon}_{2} = \begin{pmatrix} \varepsilon_{n}, 0, 0\\ 0, \varepsilon_{t}, 0\\ 0, 0, \varepsilon_{t} \end{pmatrix},$$
(2)

де ε_n і ε_t – відповідно, нормальна і тангенціальна складові компоненти тензора діелектричної проникності адсорбованої води. Такий вид тензора було взято з роботи [10]. Позначимо всі комплексні діелектричні проникності через $\tilde{\varepsilon}$.

Відомо, що поглинання EMB у системах подібного типу добре визначається уявною частиною ефективної діелектричної проникності системи. Оскільки ми розглядаємо низькочастотну область поглинання EMB (де $\lambda >> R$, λ – довжина хвилі випромінювання), то в даному випадку для розрахунку $\tilde{\varepsilon}(\omega)$ з великою точністю може бути використано наближення Максвелл-Гарнетта, яке для даної моделі запишеться в наступному вигляді:

$$\frac{\widetilde{\varepsilon}(\omega) - \varepsilon_1}{\widetilde{\varepsilon}(\omega) + 2\varepsilon_1} = \frac{4}{3}\pi N\alpha(\omega), \tag{3}$$

де $\alpha(\omega)$ – поляризованість неоднорідної двошарової кулі радіусу R у зовнішньому полі. При виконанні умови $\lambda >> R$, вираз для $\alpha(\omega)$ має вигляд [9]:

$$\alpha = R^3 \frac{\left[(s+1)\varepsilon_n + \varepsilon_3 \right] s\varepsilon_n - \varepsilon_1 q^{2s+1} + \left[\varepsilon_3 - s\varepsilon_n \right] \varepsilon_1 + (s+1)\varepsilon_n }{\left[\varepsilon_3 + (s+1)\varepsilon_n \right] 2\varepsilon_1 + s\varepsilon_n q^{2s+1} + \left[2\varepsilon_{1_n} \right] - (s+1)\varepsilon [s\varepsilon_n - \varepsilon_3]},$$
(4)

 $\mathsf{Ae} \ s = \left(2\varepsilon_t / \varepsilon_n + \frac{1}{4}\right)^{1/2} - \frac{1}{2}, \ q = \frac{R}{r}.$

У випадку $\varepsilon_t = \varepsilon_n = \varepsilon_2(\omega)$ вираз (4) переходить у відомий вираз для поляризованості двошарової неоднорідної кулі

$$\alpha = R^3 \frac{(2\varepsilon_2 + \varepsilon_3)(\varepsilon_2 - \varepsilon_1)q^3 + (\varepsilon_3 - \varepsilon_2)(\varepsilon_1 + 2\varepsilon_2)}{(\varepsilon_3 + 2\varepsilon_2)(2\varepsilon_1 + \varepsilon_2)q^3 + 2(\varepsilon_1 - \varepsilon_2)(\varepsilon_2 - \varepsilon_3)}.$$
(5)

3 (5) випливає ряд практично важливих висновків, які реалізуються при великих частотах. Так, при виконанні умови

$$q^{3} = \frac{(\varepsilon_{2} - \varepsilon_{3})(\varepsilon_{1} + 2\varepsilon_{2})}{(\varepsilon_{2} - \varepsilon_{1})(\varepsilon_{3} + 2\varepsilon_{2})}$$
(6)

поляризованість кулі прямує до нуля.

При виконанні умов (5) та (6) ефективна діелектрична проникність окремої кулі

$$\varepsilon = \varepsilon_2 \frac{2\varepsilon_2(q^3 - 1) + \varepsilon_3(q^3 + 2)}{\varepsilon_2(2q^3 + 1) + \varepsilon_3(q^3 - 1)}$$
(7)

точно дорівнює діелектричній проникності оточення (область 3). Фізично це означає, що електромагнітна хвиля, проходячи через таке дисперсне середовище, практично не розсіюється ("просвітлення" дисперсних систем [11]).

Перейдемо тепер до розрахунку й аналізу ефективної діелектричної проникності системи в цілому. У випадку $\varepsilon_t = \varepsilon_n$ з формул (3) і (5) знаходимо:

$$\widetilde{\varepsilon} = \varepsilon_1 \frac{1 + 2f\overline{\varepsilon_1}}{1 - f\overline{\varepsilon_1}}; \quad \overline{\varepsilon_1} = \frac{\varepsilon - \varepsilon_1}{\varepsilon + 2\varepsilon_1}, \tag{8}$$

де $f = \frac{4}{3}\pi R^3 N$ – об'ємна концентрація включень (ступень заповнення);

ε – ефективна діелектрична проникність окремої двошарової кулі, яка знаходиться за формулою (7).

Розкладаючи вираз (8) на елементарні множники, знаходимо:

$$\widetilde{\varepsilon} = \widetilde{\varepsilon}_{\infty} + \frac{C_1(\widetilde{\varepsilon}_- - \widetilde{\varepsilon}_{\infty})}{1 + i\omega\tau_3} + \frac{C_2(\widetilde{\varepsilon}_- - \widetilde{\varepsilon}_{\infty})}{1 + i\omega\tau_4},$$
(9)

де

$$\widetilde{\varepsilon}_{\infty} = \varepsilon_1 \frac{(1+2f)\varepsilon_{2\infty} + 2\varepsilon_1(1-f)}{(1-f)\varepsilon_{2\infty} + \varepsilon_1(2+f)};$$
(10)

$$\widetilde{\varepsilon}_{0} - \widetilde{\varepsilon}_{\infty} = \frac{9f\varepsilon_{1}}{(1-f)[(1-f)\varepsilon_{2\infty} + \varepsilon_{1}(2+f)]};$$
(11)

$$C_1 = \frac{\tau_4}{\tau_1} \cdot \frac{(\tau_3 - \tau_1)}{(\tau_3 - \tau_4)}; \quad C_2 = \frac{\tau_3}{\tau_1} \cdot \frac{(\tau_1 - \tau_4)}{(\tau_3 - \tau_4)}.$$
(12)

Відзначимо, що

$$C_1 + C_2 = 1,$$
 (13)

а $\tau_{_3}$ і $\tau_{_4}$ знаходяться з наступних двох рівнянь:

$$\tau_3 + \tau_4 = \tau_1 + \tau_2 \frac{\left(\varepsilon_{20} - \varepsilon_{2\infty}\right)}{\varepsilon_{20}} + \tau_2 \frac{\left[\varepsilon_{2\infty}(1-f) + \varepsilon_1(2+f)\right]}{\varepsilon_{20}(1-f)};$$
(14)

$$\tau_{3}\tau_{4} = \frac{\varepsilon_{2\infty}(1-f) + \varepsilon_{1}(2+f)}{\varepsilon_{20}(1-f)}.$$
(15)

Рис. 2. Залежності $\tilde{\varepsilon}'$ та $\tilde{\varepsilon}''$ для $\sigma_{s}=5\cdot10^{-11}$ Ом⁻¹, x=0.01, r=5·10⁻⁷м: $\varepsilon_{t} = \varepsilon_{n} = \varepsilon_{2} = \varepsilon_{B}(1 + \frac{1}{i\omega\tau_{0}})$ $1 - f_{0} = 0.01, \ \tau_{0} = \frac{\varepsilon_{b}\varepsilon_{0}}{\overline{\sigma}};$ $2 - f_{0} = 0.05, \ \sigma = \frac{\sigma_{s}}{h}.$ $3 - f_{0} = 0.1.$

Рис. 3. Залежності $\tilde{\varepsilon}'$ та $\tilde{\varepsilon}''$ для $\sigma_s = 5.10^{-11} \text{Om}^{-1}$, $f_0 = 0.1$, *r*=5.10⁻⁷м: 1 – *x*=0.01, 2 – *x*=0.1, 3 – *x*=0.2.

Отримані аналітичні залежності ефективної діелектричної проникності системи від параметрів: $x_1 = \frac{1}{3} \left(\frac{R^3 - r^3}{R^3} \right)$ (відносний вклад об'єму води в окремій частинці аеросилу) і *f* (ступінь заповнення) повністю розв'язують задачу про діелектричні втрати в таких дисперсних системах.

Нижче на рисунках наведено частотні залежності дійсної та уявної частин ефективної діелектричної проникності $\tilde{\varepsilon}$ дисперсного діоксиду кремнію для різних значень параметрів: степені заповнення $f_0 = 4/3\pi r^3 \cdot N$ (рис. 2), поверхневої провідності σ_s (рис. 3) та об'ємного вмісту води

Рис. 4. Залежності $\tilde{\varepsilon}'$ та $\tilde{\varepsilon}''$ для $f_0 = 0.1$, *x*=0.01, *r*=5·10⁻⁷м, 1- σ_s =5·10⁻¹¹ Ом⁻¹, 2 - σ_s =5·10⁻¹¹ Ом⁻¹, 3 - σ_s = 5·10⁻¹¹ Ом⁻¹

Тут і надалі частота ω приведена в Гц. При розрахунках діелектрична проникність SiO_2 вибиралася рівною $\varepsilon_3 = 1.5$, а діелектрична проникність середовища – $\varepsilon_1 = 1$; вважалося, що діелектрична проникність

плівки визначалася формулою $\varepsilon_2 = \varepsilon_{g} \left(1 + \frac{1}{i\omega\tau_0} \right)$, причому $\varepsilon_n = \varepsilon_t$.

Висновки

У наближенні Максвелл-Гарнетта проведено детальний аналіз залежностей ефективної діелектричної проникності як від частоти зовнішнього поля, так і від параметрів системи. Розраховано діелектричні втрати в матричних дисперсних системах із двошаровими кульовими включеннями. З одержаних результатів випливає, що при провідностях $\sigma_s \sim (10^{-10} - 10^{-11})$ Ом⁻¹, (експериментальне значення [10]), величині ступеня заповнення $f \sim (0.05 - 0.1)$ та об'ємному вмісту води $x \sim 1\%$ в області частот $\omega \sim (10^7 - 10^8)$ Гц спостерігаються діелектричні втрати на рівні $\tilde{\varepsilon}'' \sim (0.1 - 0.2)$.

1. Челидзе Т. Л. Электрическая спектроскопия гетерогенных систем / Челидзе Т. Л., Деревянко А. И., Куриленко О. Д. – К. : Наук. думка, 1977. – 232 с.

2. Felderhof B. U., Ford G. W., Cohen E. G. D. Cluster expansion for the dielectric constant of a polarizable suspension // J. Stat. Phys. – 1982. – 28, № 1. – P. 135–164.

3. Lamb W., Wood D. M., Ashcroft N. W. Long-wavelenght electromagnetic propagation in heterogeneous media // Phys. Rev. B. – 1980. – 21, № 6. – P. 2248–2266.

4. Ландау Л. Д. Электродинамика сплошных сред / Ландау Л. Д., Лифшиц Е. М. // Теоретическая физика. – Т. 8. – М. : Наука, 1982. – 624 с.

5. Maxwell J. C. A treatise on electricity and magnetism. – Oxford : Clarendon, 1891. – 3rd ed. – Vol. 2.

6. Maxwell Garnett J. C. Colours in metal glasses and in metallic films // Philos. Trans. Roy. Soc. – 1904. – A203. – Pl. 385–420.

7. Grechko L. G. Influence of particle multipole interaction on the absorbtion spectra of radiation in the metallic composites / Grechko L. G., Pustovit V. N., Shostak S. V. // Pros. SPIE. – 1999. – V. 3890. – P. 391–397.

8. Диэлектрические потери в многослойных дисперсных системах / Гречко Л. Г., Зарко Г. М., Козуб Г. М. и др. // ИТФ-91-26Р. – К., 1991. – 33 с. (препринт).

9. Шостак С. В. Діелектричні втрати в матричних дисперсних системах / С. В. Шостак, Д. Л. Водоп'янов, Л. Г. Гречко // Вісник Київського Університету. Серія «Фізико-математичні науки». – 2002. – Вип. 1. – С. 412–420.

10. Гречко Л. Г. Диэлектрическая проницаемость дисперсных систем / Л. Г. Гречко, В. В. Мотрич, В. М. Огенко // Химия, физика и технология поверхности. – 1993. – Вип. 1. – С. 17–36.

11. Пришивалко А. П. Рассеяния и поглощение света неоднородными и анизатропными сферическими частицами / Пришивалко А. П., Бабенко А. П., Кузьмин В. Н. – Мн. : Наука и техника, 1984. – 263 с.

ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МАТРИЧНЫХ ДИСПЕРСНЫХ СИСТЕМ С ДВУХСЛОЙНЫМИ ВКЛЮЧЕНИЯМИ В ПРИБЛИЖЕНИИ МАКСВЕЛЛ-ГАРНЕТТА

С. В. Шостак

Аннотация. Рассчитано диэлектрические потери в матричных дисперсных системах с двухслойными сферическими включениями. В приближении Максвелл-Гарнетта проведен детальный анализ зависимостей эффективной диэлектрической проницаемости как от частоты внешнего поля, так и от параметров системы.

Ключевые слова: *диэлектрические потери, матричные дис*персные системы, эффективная диэлектрическая проницаемость.

DIELECTRIC PROPERTIES OF THE MATRIX DISPERSED SYSTEMS WITH TWO-LAYERED INCLUSIONS IN THE MAXWELL-GARNETT APPROXIMATION

S. Shostak

Annotation. Calculated dielectric losses in the matrix dispersed systems with two-layer spherical inclusions. In the approximation of Maxwell-Garnett made a detailed analysis of the dependence of the effective permittivity as the frequency of the external field and the parameters of the system.

Key words: dielectric loss, matrix dispersion systems, the effective dielectric constant.

УДК 620.92

ПИТОМА ЕНЕРГОЄМНІСТЬ ВИРОБНИЦТВА ДИЗЕЛЬНОГО БІОПАЛИВА З ВИКОРИСТАННЯМ ГІДРОМЕХАНІЧНОГО ПЕРЕМІШУВАННЯ

М. Ю. Павленко, кандидат технічних наук О. Ю. Осипчук, інженер e-mail: Maxim_Pavlenko@i.ua

Анотація. Наведено питому енергоємність при виробництві дизельного біопалива залежно від конструктивних параметрів обладнання для виробництва дизельного біопалива при використанні гідромеханічного перемішування рослинної олії.

Ключові слова: дизельне біопаливо, гідростанція, питома енергоємність, частота обертання двигуна, діаметр форсунок, кут нахилу лопаток.

На сьогодні достатньо серйозно стоїть питання заміни палив отриманих із нафти, а саме: дизельного палива, ціна якого помітно зростає, на паливо отримане з біомаси. Адже запаси нафти з кожним роком зменшуються, а кількість техніки, яка працює на дизельних двигунах, – збільшується. Найбільш реальним замінником традиційного дизельного палива може бути дизельне біопаливо, отримане як рослинної олії, так і з тваринних жирів. Тому виникає потреба вдосконалення обладнання для виробництва дизельного біопалива із застосуванням нових конструкційно-технологічних рішень для спрощення процесу виробництва та зменшення питомих енерговитрат при дотриманні якісних показників дизельного біопалива.

Одним із перспективних напрямів удосконалення обладнання для виробництва дизельного біопалива є використання гідромеханічного перемішування в процесі естерифікації на противагу використанню механічних мішалок.

Над удосконаленням обладнання та технологічних ліній для виробництва дизельного біопалива працював В. О. Дубровін та інші [Ошибка! неизвестный аргумент ключа.], які у своїх працях узагальнили досвід виробництва та використання біопалив. Було також розроблено обладнання для виробництва дизельного біопалива з використанням