THE HISTOGRAM OF PULSARS' PERIODS DISTRIBUTION

Vladimir P. Bezdenezhnyi
Department of Astronomy, Odessa National University
T.G.Shevchenko Park Odessa 270014 Ukraine
astro@paco.odessa.ua

Abstract

In considering of the distribution of periods for pulsars taken from Smith (1979) and GCVS (1976) data 20 peaks are found: at 0.672 sec , $0.450 \mathrm{sec}, 0.403 \mathrm{sec}, 0.270 \mathrm{sec}, 0.191 \mathrm{sec}$ and other smaller peaks. Identifications and comparison with the distribution of periods for δ Scuti stars are carried out.

Key words: Stars: pulsars, δ Scuti, RR Lyrae, Cepheids.
In Table 1 a histogram of pulsars' periods distribution ($\mathrm{n}=105$ stars) based on the data taken from the book "Pulsars" by Smith (1979) is presented.

The intervals of periods $\Delta \mathrm{P}$ are taken as 0.05

Table 1: The histogram of pulsars' periods distribution ($\mathrm{n}=105$ stars)

$\Delta \mathrm{P}$	$n_{\text {puls }}$	$\Delta \mathrm{P}$	$n_{\text {puls }}$
$0.00-0.05$	1	$1.20-1.25$	4
$0.05-0.10$	1	$1.25-1.30$	4
0.10 .15	0	$1.30-1.35$	1
$0.15-0.20$	6	$1.35-1.40$	3
$0.20-0.25$	4	$1.40-1.45$	1
$0.25-0.30$	4	$1.45-1.50$	0
$0.30-0.35$	3	$1.50-1.55$	1
$0.35-0.40$	7	$1.55-1.60$	1
$0.40-0.45$	6	$1.60-1.65$	0
$0.45-0.50$	6	$1.65-1.70$	1
$0.50-0.55$	5	$1.70-1.75$	0
$0.55-0.60$	5	$1.75-1.80$	0
$0.60-0.65$	2	$1.80-1.85$	0
$0.65-0.70$	8	$1.85-1.90$	1
$0.70-0.75$	6	$1.90-1.95$	0
$0.75-0.80$	3	$1.95-2.00$	1
$0.80-0.85$	4	$2.00-2.05$	0
$0.85-0.90$	1	$2.05-2.10$	0
$0.90-0.95$	1	$2.10-2.15$	1
$0.95-1.00$	0	$2.15-2.20$	0
$1.00-1.05$	2	$2.20-2.25$	1
$1.05-1.10$	2	$2.25-2.30$	1
$1.10-1.15$	0	$2.30-2.35$	1
$1.15-1.20$	1	$3.70-3.75$	1

Figure 1: The distribution of pulsars' periods based on the data of the sampling according to Smith (1979).
sec. For control we give a histogram with intervals $\Delta \mathrm{P}=0.1$ sec (see Figure 1). In Table 2 and in Figure 2 the same histograms based on the data ($\mathrm{n}=147$ stars) taken from "Third supplement to the third edition of the General Catalogue of Variable stars" (Kukarkin et al., abbreviation: GCVS, 1976) are given.

We used intervals $\Delta \mathrm{P}=0.02 \mathrm{sec}$ for control of our results too. On the base of our analyses of these histograms 20 peaks (maxima) at the following periods P_{i} and frequencies f_{i} corresponding to them are obtained (see Table 3). As it can be seen from figures and Table 3, the highest peaks are: $P_{11}=0.672$ $\mathrm{sec}, P_{8}=0.403 \mathrm{sec}, P_{9}=0.448 \mathrm{sec}, P_{6}=0.270 \mathrm{sec}$ and $P_{5}=0.191 \mathrm{sec}$. The ratios of the periods show that all periods are commensurable (often - multiple ones), as in the case of pulsating stars: δ Sct, bimodal Cepheids, RR Lyrae and other types. The histogram of pulsars' periods distribution is similar to one of δ Scuti stars

Figure 2: The distribution of pulsars' periods based on the data of the sampling according to GCVS (1976).
(Bezdenezhnyi, 1994b).
We can see five sequences of multiple periods. The first sequence is: $P_{7}=8 P_{2}=5 P_{3}=2 P_{5}=P_{12} / 2=$ $P_{18} / 5=P_{19} / 6=P_{20} / 10$. Eight periods are connected with multiple relation, and moreover the period P_{7} is favoured one. We accept it for the main period and make up the ratios of every period P_{i} to the period P_{7}. The second sequence is: $P_{6}=8 P_{1}=P_{10} / 2=P_{14} / 4$. And three more multiple relations are: $4 P_{8}=2 P_{13}=$ $P_{7}, P_{15}=8 P_{4}$ and $2 P_{11}=P_{16}$. Only period P_{9} has no multiple ones in this table. Thus, we have five groups of periods, inside of wich multiple relations take place. The primary periods are: P_{7}, P_{6}, P_{8} and $P_{11} / 2$ (because period P_{11} lies between two double periods $P_{10}=2 P_{6}$ and $P_{12}=2 P_{7}$. We add two periods P_{9} and $2 P_{4}$ to these primary ones as the period P_{4} lies beside half period P_{5}. These six periods give us chance to make identifications as in the case of pulsating stars. We accept period P_{7} as $P_{1 H}$ one - the first overtone of some fundamental period that is not seen in our histograms. The last column of Table 3 contains possible interpretations of these peaks.

From our list of periods we have probable identifications: $P_{6}=P_{s}, P_{8}=P_{e}, P_{9}=P_{r}$ and $P_{11} / 2=P_{g}$. These are periods introduced by the author earlier (Bezdenezhnyi, 1994a, 1994b, 1997) for RR Lyr -type and δ Sct stars. And period $2 P_{4}$ is identified as $P_{2 H}$ (the second overtone). At such identifications the theoretical ratios $k_{\text {theor }}=P_{i} / P_{1 H}$ are given in the fifth column of Table 3. The observed P_{i} / P_{7} ratios are close

Table 2: The histogram of pulsars' periods distribution ($\mathrm{n}=147$ stars)

$\Delta \mathrm{P}$	$n_{\text {puls }}$	$\Delta \mathrm{P}$	$n_{\text {puls }}$
$0.00-0.05$	1	$1.20-1.25$	6
$0.05-0.10$	2	$1.25-1.30$	4
0.100 .15	1	$1.30-1.35$	4
$0.15-0.20$	6	$1.35-1.40$	3
$0.20-0.25$	6	$1.40-1.45$	3
$0.25-0.30$	9	$1.45-1.50$	1
$0.30-0.35$	4	$1.50-1.55$	1
$0.35-0.40$	8	$1.55-1.60$	2
$0.40-0.45$	9	$1.60-1.65$	1
$0.45-0.50$	6	$1.65-1.70$	1
$0.50-0.55$	7	$1.70-1.75$	0
$0.55-0.60$	6	$1.75-1.80$	0
$0.60-0.65$	5	$1.80-1.85$	0
$0.65-0.70$	10	$1.85-1.90$	2
$0.70-0.75$	7	$1.90-1.95$	0
$0.75-0.80$	5	$1.95-2.00$	2
$0.80-0.85$	6	$2.00-2.05$	0
$0.85-0.90$	2	$2.05-2.10$	0
$0.90-0.95$	2	$2.10-2.15$	1
$0.95-1.00$	1	$2.15-2.20$	0
$1.00-1.05$	2	$2.20-2.25$	1
$1.05-1.10$	3	$2.25-2.30$	1
$1.10-1.15$	0	$2.30-2.35$	1
$1.15-1.20$	3	$2.35-2.40$	1
-	-	$3.70-3.75$	1

Table 3: Results of identifications of pulsars' periods

i	$P_{i}(\mathrm{sec})$	$f_{i}(1 / \mathrm{sec})$	P_{i} / P_{7}	$k_{\text {theor }}$	ident.
1	0.033	30.303	0.087	0.089	$P_{s} / 8$
2	0.047	21.277	0.124	0.125	$P_{1 H} / 8$
3	0.075	13.333	0.199	0.200	$P_{1 H} / 5$
4	0.150	6.667	0.397	0.400	$P_{2 H} / 2$
5	0.191	5.236	0.506	0.500	$P_{1 H} / 2$
6	0.270	3.704	0.715	0.711	P_{s}
7	0.3775	2.649	1	1	$P_{1 H}$
8	0.403	2.481	1.068	1.067	P_{e}
9	0.448	2.232	1.187	1.185	P_{r}
10	0.538	1.859	1.425	1.422	$2 P_{s}$
11	0.672	1.488	1.780	1.778	$2 P_{g}$
12	0.750	1.333	1.987	2	$2 P_{1 H}$
13	$0.801:$	1.248	2.122	2.133	$2 P_{e}$
14	1.075	0.930	2.848	2.844	$4 P_{s}$
15	$1.210:$	0.826	3.205	3.200	$4 P_{2 H}$
16	$1.332:$	0.751	3.528	3.556	$4 P_{g}$
17	$1.616:$	0.619	4.281	4.264	$4 P_{e}$
18	1.875	0.533	4.970	5	$5 P_{1 H}$
19	2.270	0.441	6.010	6	$6 P_{1 H}$
20	$3.745:$	0.267	9.920	10	$10 P_{1 H}$

to theoretical ones from multiplicity viewpoint. In 19 cases of 20 the observed period ratios are different from theoretical ones within 0.03 .

Thus, similarly to pulsating stars, the periods of pulsars are close to periods $P_{1 H}, P_{2 H}, P_{r}, P_{e}, P_{g}$, P_{s} and multiple to them ones. It is curiously that fundamental period P_{f} is absent in this range.

References

Bezdenezhnyi V.P.: 1994a, Odessa Astron. Publ., 7, 55.

Bezdenezhnyi V.P.: 1994b, Odessa Astron. Publ., 7, 57.
Bezdenezhnyi V.P.: 1997, Odessa Astron. Publ., 10, 95.
Kukarkin B.V., Kholopov P.N. et al.: 1976, Third Supplement to the third edition of the General Catalogue of Variable Stars, Nauka, Moscow, 324.
Smith F.G.: 1979, Pulsars, Moscow, 256.

