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ABSTRACT. The radial motions of the charged test
particles in the field of a spherically symmetric charged
object in general relativity are considered and their
classification is built. The conditions of equilibrium
for these particles are studied and equilibrium stability
conditions are received. It is shown, that stable states
are only possible for the bound states of the weakly
charged particle in the field of the abnormally charged
central source.
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1. Introduction

The consideration of motion of the charged particles is
an important part of the general research of the behav-
ior for the charged configurations in general relativity.
The motion of the charged test particles in Reissner-
Nordström field was considered by Cohen (1979), the
radial motions was studied by Finley (1974). One of
the main reasons of the researches is the receiving of
the conditions under which the falling on the center
takes no place, and the finding of the stability condi-
tions for the charged particles in the field of the charged
object. Thus, the paper Bonnor (1993) was dedicated
the study of the equilibrium stability conditions for the
charged particles. Note that in his paper this problem
was considered without taking into account the conser-
vation law and has been solved incompletely.

In this paper we carry out the classification of the ra-
dial motions for the charged particles in the spherically
symmetric gravitational and electrical fields of the cen-
tral source by using the energy conservation law. The
research of this problem leads to the equilibrium con-
ditions of stable states of the charged particles in the
Reissner-Nordström field.

2. The equation of motion for the charged

particle

The gravitational field of a spherically symmetric
source with mass M and charge Q is described by

Reissner-Notdström metric

ds2 = Fc2dT 2 − F−1dR2 −R2(dθ2 + sin2 θdϕ2) , (1)

where

F = 1− 2γM

c2R
+

γQ2

c4R2
, (2)

γ and c — are the gravitation constant and veloc-
ity of light respectively. In dependence on the rela-
tion between mass and charge it is possible to sepa-
rate following types of the charged relativistic objects:
the charged black hole (

√
γM > |Q|) , the extremely

charged black hole (
√
γM = |Q|) , the abnormally

charged object (
√
γM < |Q|) .

Lagrangian of a test particle with mass m and charge
q is given by:

L(R, Ṙ) = −mc
√

Fc2 − F−1Ṙ2 − qQ/R , (3)

where a dot denotes differentiation with respect to T .
It is easy to see, that the total energy of the charged
particle is conserved and equals to

E =
qQ

R
+

mc2F√
F − F−1Ṙ2/c2

. (4)

From here we have the equation of radial motion:

(
mc2

dR

ds

)2

=

(
E − qQ

R

)2

−m2c4
(
1− 2γM

c2R
+

γQ2

c4R2

)
.

(5)
The similar equation for Reissner-Nordström-de Sitter
metric has been received by Gonçalves (2001) by using
Killing vector. Further, for the particle acceleration we
find:

d2R

ds2
=

1

m2c4

[(
EqQ−m2c2γM

) 1

R2
+

+
(
γm2 − q2

) Q2

R3

]
.

(6)
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3. Classification of the radial motions

The standard method of the qualitative analysis of the
particle trajectories is based on the study of effective

“velocity potential“ behaviour
(
mc2dR/ds

)2 ≡ −U
(see, for example, Wilkins (1972), Cohen and Gautreau
(1979), Dymnikova (1986), Gonçalves (2001)). Let us
rewrite the potential (5) in the form

U(Q,M,R) = m2c4 − E2 −
(
γMm2c2 −EqQ

) 2

R
+

+
(
γm2 − q2

) Q2

R2
.

The admissible motions are defined by an inequality
U(Q,M,R) ≤ 0 where equality specifies the turning
points. The presence of parameter of classification M
in the potential U is not suitable for particles dynamics
analysis. Therefore, let us introduce the “mass poten-
tial“ Um which is the solution of the equation U = 0
with respect to M

Um(Q,R) =
1

2γm2c2
[
(m2c4 − E2)R+ 2EqQ+

+
(
γm2 − q2

) Q2

R

]
.

(7)

In this case the regions of admissible motions are spec-
ified by an inequality Um(Q,R) ≤ M . Besides the
potential Um let us introduce one more function Ug

which can be find from the equation F = 0 defining
horizons

M =
1

2

(
Rc2

γ
+

Q2

Rc2

)
≡ Ug(Q,R) . (8)

The function Ug determines a value of the mass of black
hole having charge Q and radius of horizon R.

The behavior of function Um(Q,R) depends on
the relation between particle parameters defining its
asymptotics. As a result we obtain the following cases:
1. when R→ 0 we have
1.a if γm2 > q2, then Um(Q,R)→ +∞,
for the weakly charged particle;
1.b if γm2 = q2 then Um(Q,R)→ EqQ/γm2c2,
for the extremely charged particle;
1.c if γm2 < q2 then Um(Q,R)→ −∞,
for the abnormally charged particle.

2. when R→∞ we have
2.a if E2 < m2c4 then Um(Q,R)→ +∞,
for the bound states of the particle;
2.b if E2 = m2c4 then Um(Q,R)→ EqQ/γm2c2,
for the particle with a critical mass;
2.c if E2 > m2c4 then Um(Q,R)→ −∞,
for the unbound states of the particle.

For certainty we suppose Q > 0 and M > 0. Thus, the
introduced conditions define 9 types of behavior for po-
tential Um. Taking into account the sign of a charge
q and type of the central object we obtain 54 types of
behavior.

To plot and analysis functions Um and Ug suitable
to use the dimensionless variables

Ũm(ε, β, x) =
1

2

[
(1− ε2)x+ 2εβ +

(
1− β2

) 1

x

]
,

Ũm(ε, β, x) ≤M ,

(9)

Ũg(x) =
1

2

(
x+

1

x

)
, (10)

where Ũm =
√
γUm/Q, Ũg =

√
γUg/Q, x =

Rc2/
√
γQ, ε = E/mc2, β = q/

√
γm, M =√

γM/Q .

Comparing Ũm and Ũg, we come to the relation

Ũg(x) = Ũm(ε, β, x) +

(
ε
√
x− β√

x

)2

(11)

from which it follows that Ũg(x) ≥ Ũm(ε, β, x) . From

this it follows that the curve Ũg(x) lies always be-
low then the “mass potential“ curve. The reason is
that the turning radiuses do not exist in T-region
where the radial coordinate becomes time-like. The
equality Ũg(x) = Ũm(ε, β, x) defines a point of a
contact for these curves xtang = β/ε whence it fol-
lows that Rtang = qQ/E. Let us note, that a par-
ticle with the energy E = qQ/R+, where R+ =(
γM +

√
γ(γM2 −Q2)

)
— is the exterior horizon,

has a turning point on the events horizon exactly
(Chandrasekhar, 1986).

The plots for potentials Ũm(ε, β, x) and Ũg(x) for all
cases of classification are represented at fig. 1-9.

As an example let us consider fig.1 which corre-
sponds to the bound states of the weakly charged parti-
cles. The curves a and b correspond to the mass poten-
tials Ũ+m and Ũ−m for the cases q > 0 and q < 0 re-
spectively. The curve Ũg(x) describes a line of horizon.
The segments of horizontal lines define the trajectories
of the motions of particles. The intersections of curves
Ũ+m and Ũ−m with a line Ũm(ε, β, x) = M give the
turning points. The line 1 describes the motion of a
particle in the field of the weakly charged black hole,
the line 2 — is for the case in the field of the extremely
charged black hole, and the lines 3 and 4 — are for the
motion of the particles with charges q > 0 (a curve a)
and q < 0 (a curve b) in the field of the abnormally
charged object. The character of motion of the parti-
cles for other cases can be consider in a similar way.

3. The stability conditions

The stationary positions Rextr of a particle are defined
by conditions dR/ds = 0 and d2R/ds2 = 0. Moreover
if d2R/ds2 > 0 when R < Rextr, and d2R/ds2 < 0
when R > Rextr then the position Rextr will be steady.
From definitions for the “velocity“ and “mass“ poten-
tials it follows

Um(Q,R) =
R

2γm2c2
U(Q,M,R) +M . (12)
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Figure 1: The bound states (E2 < m2c4) of the weakly
charged particle (γm2 > q2).

Figure 2: The weakly charged particle (γm2 > q2) with
a critical mass (E2 = m2c4).

Figure 3: The unbound states (E2 > m2c4) of the
weakly charged particle (γm2 > q2).

Figure 4: The bound states (E2 < m2c4) of the ex-
tremely charged particle (γm2 = q2).

Figure 5: The extremely charged particle (γm2 = q2)
with a critical mass (E2 = m2c4).

Figure 6: The unbound states (E2 > m2c4) of the
extremely charged particle (γm2 = q2).
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Figure 7: The bound states (E2 < m2c4) of the the
abnormally charged particle (γm2 < q2).

Figure 8: The abnormally charged particle (γm2 < q2)
with a critical mass (E2 = m2c4).

Figure 9: The unbound states (E2 > m2c4) of the
abnormaly charged particle (γm2 < q2).

In a stable point Rextr, where U(Rextr) = 0 or
Um(Rextr) = M , the conditions (∂U/∂R)|Rextr

= 0
and (∂Um/∂R)|Rextr

= 0 coincide and give

Rextr = Q

√
γm2 − q2

m2c4 − E2
. (13)

Excluding variable R from dR/ds = 0 and d2R/ds2 = 0
we receive the relation

(m2c4 − E2)(γm2 − q2)Q2 = (m2c2γM − EqQ)2 (14)

from which we find two systems of inequalities

|q| < m
√
γ, |E| < mc2 ,

|q| > m
√
γ, |E| > mc2 .

(15)

Rewriting (16) in the form

(Q2 − γM2)(γm2 − q2) = γ

(
EQ

c2
− qM

)2

(16)

in a similar way we obtain

|q| < m
√
γ, |Q| > M

√
γ ,

|q| > m
√
γ, |Q| < M

√
γ .

(17)

From classification of motions and relations (15) and
(17) we find the following conditions: |E| < mc2,
|q| < m

√
γ, |Q| > M

√
γ is for stable equilibrium of the

bound states of weakly charged particle in the field of
the abnormally charged object; |E| > mc2, |q| > m

√
γ,

|Q| < M
√
γ is for instable equilibrium of the unbound

states of the abnormally charged particle in the field of
the charged black hole. The stability conditions (17)
were received by Bonnor (1993) without use of the con-
servation laws. However he did not indicate, which of
the conditions of equilibrium is stably and did not re-
ceive stable point of a particle. Note that in the work
of Markov and Frolov (1972) it is stated that in case of
the abnormally charged object |Q| > M

√
γ the stable

system is impossible.
Thus, the stable stationary positions are only possi-

ble for the bound states of weakly charged particle in
the field of the abnormally charged central object.
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