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ABSTRACT. On the base of the combined method,
consisting of the Sasao, Okubo, Saito (1980) approach
with the iteration procedure, allowing couple finite
element method with the solution of the Laplace
equation, it have evaluated the influence of outer
core viscosity on the components of the earth forced
nutation. It was derived, that outer core viscosity
actually doesn’t have influence on the in phase nuta-
tion components, but this influence can reach some
percents for out of phase nutation components, if
we suggest the average value of the outer liquid core
viscosity is the order of 1010 Pas.
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1. Introduction

Still, it is absent certain opinion about the value of
outer core viscosity and it’s distribution. The eval-
uations of the average outer core dynamic viscosity,
detected by different methods: astro-geodesic, seismic,
geomagnetic, methods of melting metals, have scatter-
ing from 10−1 to 1014 Pas. Probably, this scattering
have place due to different approaches. But analysis
of the approaches permits pick out the order of the
most coordinated average viscosity value about 1010

Pas. As for law of outer core viscosity distribution, in
present time dominates conception: outer core consists
on melting metal of the high-viscosity from 104 near
mantle boundary to 1014 Pas into inner core boundary
layer of 100 km width [1]. In the Sasao, Okubo,
Saito (1980) [2] generalization the tidal variations
of the moments of inertia of the elastic mantle and
of the fluid core are accounted being parameterized
with the help of so called compliances κc, γc, βc.
This compliances may be expressed in terms of the
static and dynamic Love numbers k of the second
order for the earth and the outer core respectively.
Such parametrization also permits to calculate the
dissipative effects of the outer core by using imaginary
parts of the compliances [3]. In this paper on the base
of the combined method [4-6] we have detected the
forced nutation of the rotating, self gravitating earth,

which consists on elastic mantle, viscosity outer core
and solid inner, without calculation of the ocean and
atmosphere loadings.

2. Formulation of the problem

In the common case, the molecular liquid viscosity
be quit of the shear viscosity ηs and volume viscosity
ηv. Because the shear viscosity ηs plays the main role
in the dissipative processes in the case of the toroidal
oscillations of the liquid core due to precession-nutation
movements of the earth, so we shall consider only this
viscosity component. As the influences of the inner
core dynamics on the Love number k of the second or-
der are vanishing small, so using of the SOS (1980)
approach for detecting of the nutation parameters is
enough. Following this approach, we shall define the
complex compliances of the earth, consisting on elastic
mantle, viscous liquid outer core and inner solid core in
the spherical quasi-statical approximation. In this case
we have two quasi-statical equations for elastic mantle
and viscous liquid core, presented in the Tisserand ref-
erence system (X, Y, Z):

0 = grad(Vc + φn + V1uRg(R))−

−div~ugradW +
1

ρ
divP1;

0 = grad(Ve + φn + φc + V1) +
1

ρ
divP2. (1)

Where ~u - displacement vector; Ve = γΩ2(xzcosσt +
yzsinσt) - tesseral part of tidal wave potential, γ - it’s
amplitude; φn = −εΩ

2(xzcosσt+ yzsinσt) - changing
of centrifugal potential due to nutation; ε - polar mo-
tion radius of tidal wave; V1 = γ1Ω

2(xzcosσt+yzsinσt)
- changing of gravitation potential due to earth deform-
ing, γ1 - it’s amplitude; φc = −βΩ

2(xzcosσt+yzsinσt)
- changing of centrifugal potential due to earth core
rotation; β - polar motion radius of core rotation; Ω
- angle earth velocity; W - self gravitation potential;
ρ - density; σ - frequency of the tidal wave; R - earth
point radius; uR - radial displacement; g(R) - gravity
acceleration; P1, P2 - changing of stress tensors in the
elastic mantle and viscous liquid core respectively. Let
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us suggest, that oscillations into the liquid core are go-
ing with the tidal wave frequency σ, also suggest the
absence of the earth surface loads, make up Lagrange
functionals. Those functionals express the full energy
of the elastic mantle and liquid core in the cylindric
coordinate system (z, r, ϕ), here axis r coincide with
the Tisserand axis Z:

E1 = π

∫
Fs

[C1(ε
2
zz + ε2rr + ε2ϕϕ) + 4C2ε

2
zr +

+ 2C3(εzzεrr + εzzεϕϕ + εrrεϕϕ)]rdzdr −

− π

∫
Fs

[2(γ − ε+ γ1)Ω
2rw + w(

∂w

∂z
cosα+

+ 2
∂u

∂z
sinα)g(R) + 2w(wcosα+

+ 2usinα)g′Rcosα− 2w(
∂w

∂z
+

+ 2(
∂u

∂r
))g(R)cosα+ 2(γ − ε+ γ1)Ω

2zu+

+ u(2
∂w

∂r
cosα+

∂u

∂r
sinα)g(R) + 2u(2wcosα+

+ usinα)g′Rsinα− 2u(2
∂w

∂z
+

+
∂u

∂r
+
u

r
)g(R)sinα]ρrdzdr; (2)

E2 = π

∫
Fs

[C4(ε
2
zz + ε2rr + ε2ϕϕ) + 4C5ε

2
zr +

+ 2C6(εzzεrr + εzzεϕϕ + εrrεϕϕ)]rdzdr −

− π

∫
Fs

[2(γ − ε− β + γ1)Ω
2rw +

+ 2(γ − ε− β + γ1)Ω
2zu]ρrdzdr. (3)

Here C1 = K + 4µ
3
, C2 = µ,C3 = K −

2µ
3
- real coeffi-

cients; C4 = Kf +
4iσηs

3
, C5 = iσηs, C6 = Kf −

2iσηs

3
-

complex coefficients; µ,K - shear and compress mod-
ules of the elastic mantle; Kf - compressibility of the
liquid core; ηs - shear dynamic viscosity of the liq-
uid core; i - imaginary unit; εij - deformation com-
ponents; w, u - displacement components along z, r re-
spectively; Fs - meridional cross section area of the
earth; cosα = z

R
, sinα = r

R
. For resolving the system

equations (1), without calculation of the surface loads,
the finite element method is using. This method is
based on the variational Lagrange principal, express-
ing the minimum of the full system energy, tends to
resolving system of variational equations, such as:

δE1 = 0; δE2 = 0. (4)

The detailed description of the finite element resolving
problem is presented in the publications [4,5]. But
the finite element only, doesn’t permit to calculate the
earth gravity field relaxation due to it’s deforming.
For resolving this problem we will use Wu (2004)
approach [7]. As earth deforming potential V1 is

harmonic function, so it must satisfy to Laplace equa-
tion. Another hand, exactly resolving of the Laplace
equation can be defined from the radial displacements
ur on the heterogeneity layer boundaries of the earth.
The radial displacements can be detected by the finite
element method [4]. The combined resolving of the
problem is realizing during for iteration process:

1)firstly, the finite element problem is realizing for
V1 = 0, as a result, the radial displacements ur are
defined;

2)the meanings of the earth deforming potential V1

are defining from the detected radial displacements ur
on the base of the Wu formalism [7];

3)then, presented here procedure repeats with the
calculation of the defined meanings of the potential
V1;

4)the iteration process is continuing till of the con-
vergence of the results of the resolving problem; as
calculation shows, the convergence have been gained
after 4 - 6 iterations.

3. The definition of the earth forced nutation

with the calculation of the outer core viscosity

The retrograde and prograde circular nutation com-
ponents in phase and out-of-phase are detected by for-
mulas [8]:

η+ = −
1

2
(εr +Ψrsinε0)(

η+

η+
r

) = B+

R − iB+

I ; (5)

η− = −
1

2
(εr −Ψrsinε0)(

η−

η−r
) = B−R − iB−I . (6)

Where ε0 - ecliptic obliquity; B
+

R , B
−

R and B
+

I , B
−

I - are
retrograde and prograde circular nutation components
in phase and out-of-phase respectively; the meanings
of nutation for rigid earth in the obliquity εr and in
the longitude Ψr were took from Kinoshita (1977) the-

ory [9]. The relative amplitudes of the retrograde η+

η
+
r

and prograde η−

η
−

r

circular nutation components were

defined on the base of the combined method [4-6] with
the calculation of the crossing from polar motion to
nutation coordinates:

η(σ) =
Af

Am

eΩ2

σ(σ − σ0)
[1−

γc

e
+
γc − κc

e

σ +Ω

Ω
]γ +

+ [
eΩ2

σ(σ +Ω)
−

κcΩ

σ
]γ; (7)

σ0 = −
A

Am

(ef − βc)Ω− Ω; (8)

κc =
koR

5
eΩ

2

3GA
; γc =

k
f
0R

5
fΩ

2

3GAf

;βc =
k
f
1R

5
fΩ

2

3GAf

. (9)
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Here e, ef - ellipticities of the earth and outer core
respectively; A,Am, Af - the main moments of inertia
of the earth, mantle and outer liquid core; σ0 - the near
diurnal resonance of the liquid core frequency; Re, Rf

- radiuses of the earth and liquid core respectively;
G - gravitation constant. The complex, due to liquid
core viscosity, static Love numbers of the second order
for the earth and liquid core: k0, k

f
o were defined on

the base of above presented iteration procedure under
static conditions: γ − ε = 1, β = 0, from the formulas:
k0 = γ1(Re), k

f
0 = γ1(Rf ). There γ1(Re), γ1(Rf ) -

are complex amplitudes of the gravitating potential
V1 on the earth and liquid core surfaces respec-
tively. The complex dynamic Love numbers: k1, k

f
1

were defined analogically under dynamic conditions:
γ− ε = 0, β = 1. Then complex compliances: κc, γc, βc
were detected by the formulas (9). As for typical liquid
core viscosity values the imaginary part of the βc pa-
rameter become vanishing small, so we have neglected
by one and have considered only real part of the liquid
core resonance frequency σ0 (8). At the detection iter-
ation process ten layer earth model, obtaining on the
base of the standard earth ”PREM” - model, was used.
The obliquity and longitude nutation components in
phase and out-of-phase can be defined by the formulas:

εR = −B
−

R −B+

R ; ΨRsinε0 = B−R −B+

R ;

εI = B−I −B+

I ; ΨIsinε0 = B−I +B+

I . (10)

The meanings of the retrograde and prograde circle
nutation components in phase and out-of-phase for:
18.6 - year, annual, semiannual and fortnightly terms
in milliseconds are presented in the Table 1. The
meanings were obtained by combined method for
rotating, self gravitating earth, consisting on the
elastic mantle, viscosity outer liquid core and rigid
inner core, without calculation of the ocean and
atmosphere loadings. It was considered 2 variants:

a)the variant of the homogeneous viscosity liquid
core with the characteristic shear dynamic viscosity
equaled 1010 Pas;

b)the variant, which calculates the outer-inner core
boundary layer of 100 km width, with the viscosity
value of the order 1014 Pas, in the rest part of the
liquid core we choose the average viscosity value of
the 108 Pas.

For comparison, there are respective meanings of
the nutation components, presented by modern
nutation theory - MHB (2000) [10], at this table.
The comparison shows, that viscosity effect of the
liquid core actually doesn’t have influence on the
in phase nutation components, another hand this
influence may reach some percents for the out-of-
phase nutation components if we suggest the average

liquid core viscosity value is equal 1010 Pas. Also
the comparison of the results, obtaining on the
base of two above considering variants (a) and (b),
tends to suggestion, that value of the order 1010 Pas
is the top boundary of the average liquid core viscosity.

Table 1: The retrograde and prograde circu-
lar nutations in phase and out-of-phase, pre-
sented for main nutation terms in milliseconds.
Parameters (a) (b) MHB-2000
phase in in in

out of out of out of
18.6-year
η+ -1181.1903 -1181.1903 -1180.3727

-0.0028 -0.0005 -0.1035
η− -8021.8201 -8021.8201 -8024.8023

0.0223 0.0037 1.4295
annual
η+ -31.3005 -31.3005 -33.0475

0.0047 0.0008 0.3395
η− 25.6561 25.6561 25.6475

0.0005 0.0001 0.1365
semiannual
η+ -24.5802 -24.5802 -24.5590

-0.0014 -0.0002 -0.0453
η− -549.0812 -549.0812 -548.5020

-0.0151 -0.0025 -0.5043
fortnightly
η+ -3.6401 -3.6401 -3.6417

-0.0001 -0.0000 -0.0153
η− -94.0103 -94.0103 -94.1722

0.0047 0.0008 0.1477
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