POLARIS (αUMi),- MULTISTELLAR SYSTEM IN THE OPEN CLUSTER

I.A. Usenko,¹, A.S. Miroshnichenko,², V.G. Klochkova,³, V.E. Panchuk³

- ¹ Department of Astronomy, Odessa National University T.G.Shevchenko Park, Odessa 65014 Ukraine, *igus@deneb1.odessa.ua*
- ² Dpt of Physics and Astronomy, University of North Carolina at Greensboro Greensboroo, NC 27402-6170, USA, amirosh@uncq.edu
- ³ Special Astrophysical Observatory, Russian Academy of Sciences Nizhnij Arkhyz, Karachaevo-Cherkessia, 369167 Russia valenta@sao.ru; panch@sao.ru

ABSTRACT. We present the results of our analysis of high-resolution spectroscopic observations of Cepheid α UMi (Polaris A) and main-sequence type stars Polaris B and HD 5914, - optical companion and a member of Polaris open cluster. The last ones are objects with high projected rotational velocities $v \sin i = 110 \text{ km s}^{-1}$ and 100 km s}{-1}, respectively. The derived atmosphere parameters are: Polaris A: $T_{eff}=6022$ K; log g=2.2; V_t=4.3 km s⁻¹; Polaris B: T_{eff} =6900 K; log g=4.3; V_t=2.5 km s⁻¹; HD 5914: T_{eff} =8800 K; log g=4.0; V_t=2.0 km s⁻¹. C, Na and Mg content in last two stars is close to solar, whereas Polaris A demonstrates its that is typical for Cepheid after the first dredge-up stage. The distances to Polaris B and HD 5914 are 109.5 and 108 pc, respectively. The RV pulsational amplitude of Polaris A decreased to 0.6 s^{-1} in 2005 and increased to 7.5 $\rm km~s^{-1}$ in 2003

Key words: Stars: abundances - Stars: distances - Stars: Cepheids - Stars: main-sequence stars - Stars: individual - α UMi (Polaris A), Polaris B, HD 5914

1. Introduction

S-Cepheid (DCEPS) α UMi named Polaris is an unique object for astrophysical research due to the following:

- 1. It is the nearest (d = 99 (Turner, 2005) 132 pc (ESA 1997)) yellow supergiant and Cepheid in the Galaxy.
- 2. Polaris is a well-known multiple system with three visual components (Polaris B (BD+88°9, C and D) that are main-sequence stars (Fernie 1966), and the spectroscopic one (Polaris Ab with an orbital period 29.71 yrs (Turner et al. 2006).
- 3. Polaris is a member of an anonymous open cluster,

which contains late A-type and early F-type main sequence stars.

- 4. Polaris, one from four nearest Cepheid with the radius, $46\pm 3 R_{\odot}$, determined by means of optical interferometry (Nordgren et al. 1999).
- 5. CNO-abundances analysis data for Cepheid agree well with theoretically predicted ones for 3rd (or 5th) crossing of the Cepheids instability strip.

Thus, the main task consist in:

- 1. To obtain the high-resolutioned spectra of Polaris (F6 F8I), its the nearest visual companion Polaris B (F3V), and the brightest main-sequence member of Polaris cluster HR 5914 (A3V) to determine its atmospheric parameters, chemical composition, absolute magnitudes, masses and distances, respectively.
- 2. To measure the radial velocities of Polaris A during the lond observational period (1999-2006) to determine its pulsational amplitude changes.

2. Observations

Observations of these objects have been realized using:

- 1. 1m telescope Ritter Observatory, University of Toledo (Toledo, OH, USA) fiberfed echelle spectrograph 1150×1150 pixel CCD ($\lambda\lambda$ 5800-6800 Å).
- 2. 2.1m Otto Struve telescope -McDonald Observatory (Texas, USA) - SANDIFORD spectrograph (McCarthy et al. 1993) 1200×400 pixel CCD ($\lambda\lambda$ 5500-7000 Å).

Object	HJD	NS	T_{eff}	$\log g$	v_t
α UMi	2449513-9649 (1994)		5968 ± 29	2.2	4.35
	2451240-2192 (1999)	4	5973 ± 15	2.1	4.30
	2452416-2515 (2002)	9	6011 ± 25	2.2	4.60
	2452782-2986 (2003)	11	6018 ± 25	2.2	4.30
	2453005-3367 (2004)	10	6027 ± 15	2.2	4.30
	2453686-3693 (2005)	6	6063 ± 10	2.3	4.00
	2453751-4169 (2006)	7	6055 ± 30	2.2	4.00
	Mean	53	6022 ± 21	2.2	4.30
Polaris B		1	6900 ± 50	4.3	2.50
HD 5914		1	8800 ± 50	4.0	2.00

 Table 1: Observational data of Polaris cluster's objects

Table 2: Radial velocity data of α UMi during 2005-2006

HJD	Number of	RV	σ	NL
2400000 +	orders	$(\mathrm{kms^{-1}})$		
53686.615	20	-17.68	1.05	198
53687.614	27	-17.82	1.00	616
53689.647	27	-18.24	1.20	589
53690.109	27	-17.80	1.13	566
53691.633	27	-17.82	1.06	550
53693.124	27	-17.93	1.06	549
53751.121	27	-16.83	1.21	581
53808.277	27	-18.78	1.55	933
53904.350	27	-17.87	1.09	506
53980.589	27	-17.40	1.29	569
54073.589	27	-18.43	1.15	579
54077.651	27	-17.58	1.21	406

3. 6m telescope BTA - SAO RAS(Russia) - LYNX(Panchuk et al. 1999), PFES(Panchuk et al. 1998), NES(Panchuk et al. 2002) spectrometers ($\lambda\lambda$ 5050 - 7100 Å.)

The reduction was made using IRAF software, MIDAS software, DECH20 software (Galazutdinov, 1992). The observational log is given in Table 1. In Table 2 we present new radial velocity data of Polaris A, obtained during 2005-2006. Our preceding RVdata are given in Table 1 of Usenko et al. (2005a) paper

2. Atmosphere parameters and chemical composition

Atmosphere parametrs were determined:

1) T_{eff} : line deph ratio (Kovtyukh & Gorlova, 2000) for Polaris (accuracy: 15 - 70 K); (B - V)- T_{eff} , log gand SYNTH for Polaris B and HD 5914 (accuracy: 50 K);

2) log g: by adopting the same iron abundance for Fe I and Fe II lines. (accuracy: 0.15 dex) for Polaris; (B - V)-T_{eff}, log g and SYNTH for Polaris B (H_{β}); see Figure 1) and HD 5914 (H_{α}; see Figure 2)(accuracy: 0.15 dex);

3) V_t - by assuming abundances of the Fe II lines independent of the W_{λ} for Polaris (accuracy: 0.25 km/s). For Polaris B and HD 5914 these V_t data were selected using SYNTH.

The mean atmosphere parameters are given in Table

Table 3: Average abundances for Polaris cluster's objects

Elements	Polaris	Polaris B	HD 5914
[C/H]	-0.17 ± 0.10	-0.00 ± 0.05	-0.01
[N/H]	$+0.42{\pm}0.00$	+0.00	+0.00
[O/H]	-0.00 ± 0.15	-0.00	-0.02 ± 0.09
[Na/H]	$+0.09{\pm}0.11$	+0.03	-0.02
[Mg/H]	-0.21 ± 0.12	$+0.04{\pm}0.12$	-
[Fe/H]	$+0.07{\pm}0.10$	$+0.07{\pm}0.15$	$+0.05 {\pm} 0.15$

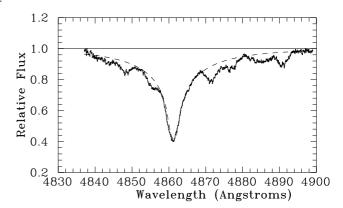


Figure 1: Fragment of Polaris B spectrum in the range 4930-4943 ÅÅwith synthetic spectrum (dashed line) for $T_{eff} = 6900$ K; $\log g = 4.3$; $V_t = 4.30$ km s⁻¹ and v sin i = 110 km s⁻¹ is shown for comparison.

1. It is necessary to note that Polaris B and HD 5914 are high-rotating objects with $v \sin i = 110 \text{ km s}^{-1}$ and 100 km s⁻¹, respectively (see Figures 1 and 2).

As seen from Table 3, a comparison of chemical abundances (CNO-elements, sodium, magnesium and iron) for Cepheid, its visual companion and main-sequence star from open cluster reveals some interesting features. All three stars display essentially identical abundances of iron, thereas Polaris B and HD 5914 appears to have a solar carbon content. The same fact noticeable for sodium and manganise content for these stars. On the other hand Cepheid Polaris A exhibits an obvious deficit of carbon, overabundance of nitrogen, small overabundance of sodium and noticeable deficit of manganese. These features agrees well with theoretically predicted abundances for 5 M_{\odot} star after 3rd or 5th crossing of the Cepheid instability strip (Usenko et al. 2005).

3. Colour-Excess and Reddening

The use of the line depth ratio method for the T_{eff} determination allows us to obtain the accurate E_{B-V} colour-excesses. Knowning the average T_{eff} and (B - V) for the Cepheid and using the Gray's (1992) (B - V) vs. T_{eff} relationship, we can calculate

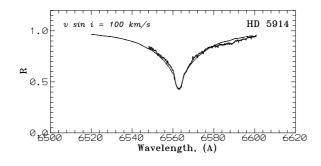


Figure 2: Fragment of HD 5914 spectrum in the range 6500-6620 ÅÅwith synthetic spectrum (dashed line) for $T_{eff} = 8800 \text{ K}$; log g = 4.0; $V_t = 2.00 \text{ km s}^{-1}$ and v sin $i = 100 \text{ km s}^{-1}$ is shown for comparison.

the intrinsic colour $(B - V)_0$, colour-excess E_{B-V} , and reddening A_V . For the mean $T_{eff} = 6021$ K we have $E_{B-V} = 0.034$ mag; $A_V = 0.102$ mag, R = 3.0 (Arellano Ferro, 1984) BC=0.01 mag (Bessell, Castelli, & Plez 1998).

4. Distances, Luminocities, Radii and Masses

As known (Usenko et al. 2005) the distance determination for Polaris system is problematical, - different methods give unequal estimates, - from 99 pc (Turner, 2005) to 132 pc (ESA 1997, Norgren et al. 1999). Known that Polaris B is F3V main-sequence star, then its radius is near 1.38 R_{\odot} (Straižys, 1982). Using our T_{eff} we can obtain its luminosity of 3.868 L_{\odot} , equivalent to an absolute magnitude $M_V = +3.30$ mag. Using our $A_V = 0.102$ mag we have obtained a distance d =109.5 pc. This result coincide with Kamper's (1996) one of 110 pc, determined by astrometrical methods.

As known, for main-sequence stars $\log(L/L_{\odot}) = 4\log(M/M_{\odot})$. Using our gravity and radius values for Polaris B, we can obtain its mass of 1.39 M_{\odot} , that agrees well with Polaris Ab F4V type spectroscopic companion, - 1.38±0.61 M_{\odot} (Evans et al. 2007).

In the case of HD 5914 we have obtained its radius of 2.14 R_{\odot} , $M_V = +1.3$ mag, d = 108 pc, and M =1.66 M_{\odot} , respectively. Therefore, for Polaris A, in the case of distance d = 109.5 pc and $T_{eff} = 6021$ K, we have: $M_V = -3.31$ mag, $\log(L/L_{\odot}) = 3.232$, R = 38 R_{\odot} , and $M = 5 M_{\odot}$, respectively.

5. RV Pulsational Amplitude Changes

As seen from Figures 3-7 RV pulsational amplitude of Polaris during 2002-2006 undergoes the changes. It is interesting that it increased from 3 to 7.5 km s⁻¹ during 2002-2003, after that we can see a decreasing from 2 to 0.6 km s⁻¹ during 2004-2005, and new

 $\overset{-13}{\approx} \xrightarrow{-15} \overbrace{-17}^{-15} \overbrace{-1}^{-17} \overbrace{-1}^{-1$

Figure 3: Radial velocity curve for Polaris A in 2002

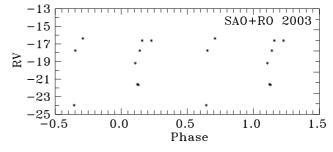


Figure 4: Radial velocity curve for Polaris A in 2003

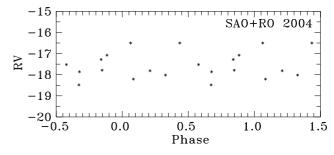


Figure 5: Radial velocity curve for Polaris A in 2004

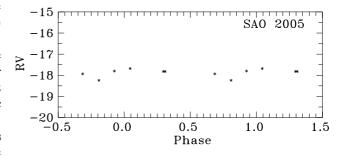


Figure 6: Radial velocity curve for Polaris A in 2005

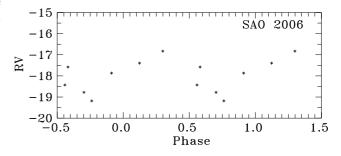


Figure 7: Radial velocity curve for Polaris A in 2006

increasing to 2 km s^{-1} in 2006.

6. Conclusions

We can summarize the results of our investigations as follows.

- 1. A large projected rotational velocity v $\sin i = 110$ km s⁻¹ for Polaris B is an evidence that Polaris system is young and Polaris B is likely to be single, since most binaries of A F types have slow rotation, the angular momentum being tied up in orbital motion. Moreover, the rapid rotation's observation could be mean that we see the star nearly equator-on. Atmosphere parameters, obtaines for Polaris B are typical for F3V star.
- 2. The same conclusions we can sum up for HD 5914 with its projected rotational velocity v $\sin i = 100$ km s⁻¹ and typical A3V spectral type.
- 3. The majority of Polaris B and HD 5914 chemical elements shows abundances, equal to Polaris A and close to solar one. But carbon, sodium and magnesium in these stars close to solar content, therefore Polaris A demonstrates a typical for the first dredge-up yellow supergiants deficit of C and Mg and overabundance of N and Na (Usenko et al. 2005). Therefore we are eye-witnesses of evolutional history of three stars with different masses in the same stellar system.
- 4. Absolute magnitude +3.30 mag for Polaris B is equal to one from Fernie (1966). Spectroscopically determined $T_{eff} = 6900$ K combinating with radius of 1.38 R_{\odot} give the distance near 109.5 pc, -a fine agreement with Kamper's (1996) one near 110 pc. This result is quite unexpected, because Turner (2005) denoted 101±3 pc to this object and Polaris system as a whole. Whereas HIPPARCOS parallax (ESA 1997) and optical interferometry (Nordgren et al. 1999) results give 132±9 pc to the Polaris A.
- 5. For HD 5914 we have the absolute magnitude +1.30 mag and for spectroscopically determined $T_{eff} = 8800$ K and radius of 2.14 R_{\odot} the desired value of distance come to 108 pc. It is a real confirmation that this star is a member of Polaris open cluster.
- 6. The obtained mass of Polaris B near 1.39 M_{\odot} has been founded as unexpected close to one of Polaris Ab spectroscopic companion, - 1.38±0.61 M_{\odot} (Evans et al. 2007), which is a main-sequence star of earlier than F4V spectral type (Evans et al. 2002). The mass of HD 5914 near 1.66 M_{\odot} is a typical for main-sequence early A- type stars.

- 7. If the distance to Polaris A of 109.5 pc is true, then in case of mean $T_{eff} = 6021$ K its absolute magnitude is -3.31 mag, radius is near 38 R_{\odot} and mass is equal to 5 M_{\odot} , respectively.
- 8. RV pulsational amplitude of Polaris A during last years undergoes sporadical changes minimized to 0.6 km s⁻¹ in 2005 and culminated to 7.5 km s⁻¹ (like before 1950 (Roemer, 1965)) in 2003. In last year we can see its new increasing.

References

- Arellano Ferro A.: 1984, MNRAS, 209, 481.
- Bessel M.S., Castelli F., Pfelz B.: 1998, A&A, 333, 231.
- ESA, 1997: The Hipparcos and Tycho catalogues, ESA-SP 1200.
- Evans N.R., Sasselov D.D., Short C.I.: 2002, *ApJ*, **567**, 1121.
- Evans N.R., Schaefer G., Bond H.E. et al.: 2007, Proceed. IAU Symp. No. 240 (in press).
- Fernie J.D.: 1966, AJ, 71, 731.
- Galazutdinov G.A.: 1992, Preprint SAO RAS No.92.
- Gray D.: 1992, Observation and Analysis of Stellar Atmospheres, (Cambridge Univ. Press, 2nd edition).
- Kamper K.W.: 1996, JRASC, 90, 140.
- Kovtyukh V.V., Gorlova N.I: 2000, A&A 358, 587.
- Nordgren T.E. et al.: 1999, AJ, **118**, 3032.
- Panchuk V.E., Najdenov I.D., Klochkova V.G. et al.: 1998, Bull. SAO RAS 44, 127.
- Panchuk V.E., Klochkova V.G., Najdenov I.D. et al.: 1999, Preprint SAO RAS, No. 139.
- Panchuk V.E., Piskunov N.E., Klochkova V.G., Yushkin M.V., Ermakov S.V.: 2002, Preprint SAO RAS, No. 169.
- Roemer E.: 1965, ApJ, 141, 1415.
- Straižys V.: 1982, "Metal-Deficient Stars", Vilnius, "Mosklas", 300.
- Turner D.G.: 2005, *OAP*, **18**, 115.
- Turner D.G., Usenko I.A., Miroshnichenko A.S., Klochkova V.G., Panchuk V.E., Yang S.L.S, Gregory P.C.: 2006, BAAS, 38, 118.
- Usenko I.A., Miroshnichemnko A.S., Klochkova V.G., Yushkin M.V.: 2005, *MNRAS*, **362**, 1219.
- Usenko I.A., Miroshnichemnko A.S., Klochkova V.G., Panchuk V.E.: 2005a, *OAP*, **18**, 130.