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ABSTRACT. Low missing mass, single- and double 

diffraction dissociation is calculated for the LHC energies 
from a dual-Regge model. The model reproduces the rich 
resonance structure at low mass region, and approximate 
behavior for high mass-region. 

 
 
1. Introduction 
 
Measurements of single (SD) double (DD) and central 

(CD) diffraction dissociation (Dif.) are among the 
priorities of the Large Hadron Collider (LHC)) at CERN. 

In the past, intensive studies of high-energy diffraction 
dissociation were performed at the Fermilab, on fixed 
deuteron target, and at the ISR, see [1] for an overview 
and relevant references. One can see the rich resonance 
structure there, typical of low missing masses, often 
ignored by extrapolating this region by a simple  

dependence. When extrapolating (in energy), one 
should however bear in mind that, in the ISR region, 
secondary Reggeon contributions are still important (their 
relative contribution depends on momentum transfer 
considered), amounting to nearly 50% in the forward 
direction. At the LHC, however, their contribution in the 
nearly forward direction in negligible, i.e. less than the 
relevant error bars in the measured total cross section [3]. 

2/1 M

This new situation makes diffraction at the LHC unique 
in the sense that for the first time Regge-factorization is 
directly applicable. 

 

2. Pre-LHC measurements: ISR, Fermilab and 
Tevatron (CDF) 

Previous to the LHC, single diffraction dissociation 
was intensively studied at the ISR the Fermilab (fixed 
deuteron target) and at the Tevatron in the range of 

GeVs 180014 << , 22GeVt < , and missing masses 
ranging from the threshold up to 15.0<ξ . The main 
results of these measurements and of their theoretical 
interpretation can be summarized as follows, for details 
see, e.g. [1, 2]: 

1. Energy dependence. At the ISR and Fermilab 
energies the integrated SD cross section rises with 

according to the standard prescription of the Regge-pole 
theory, however in slows down beyond. This effect was 
expected due to the familiar problem related to the 
violation of unitarity, namely that at high energies, 
implying the triple Pomeron limit, the D cross section 
overshoot the total cross section, (

s

)stSD σσ > . Various 
means were suggested [5] to remedy this deficiency, 
including decoupling (vanishing) of the triple Pomeron 
vertex. Goulianos renormalizes the standard Pomeron flux 
to meet the data, see [2]. Such a “renormalization" 
produces a break near GeVs 20≈  slowing down the 
rise of ( )sSDσ  in accord with the CDF data from the 
Tevatron. 

We instead will cure this problem by using rudiments 
of a dipole Pomeron (DP), compatible with unitarity 
without any renormalization factor, that produces a sharp 
(non-analytic) change in the behavior of ( )sSDσ : a dipole 
Pomeron (double Pomeron pole) is compatible with 
unitarity, in particular in the sense that both the SD cross 
section rises proportionally with the total cross section. 
The DP produces logarithmically growing cross sections 
at unit Pomeron intercept, however to meet the observed 

102 Odessa Astronomical Publications, vol. 25/2 (2012)

mailto:jenk@bitp.kiev.ua
mailto:saliy.andriy@gmail.com
mailto:turoczi.jolika@citromail.hu
mailto:himicsdia@hotmail.com


rise of the ratio totel σσ , the Pomeron intercept is 
allowed to be slightly beyond unity, namely, 

( ) 04.1=tIPα . In other words, the rise of the cross sections 
is driven both by the dipole (by a logarithmic factor) and a 
tiny (half of Donnachie-Landshoff's [8] supercritical 
intercept). 

2. t-dependence of SDσ  and the slope B(s; t;M2) was 
calculated in the range . Although nothing 
dramatic was found (the diffraction cone essentially is 
exponential in t, the shape of the diffraction cone is DD 
may contain important detail to be unveiled by future 
measurements: a dip similar to that in elastic scattering is 
likely to appear (near ). Another important issue in 
the behavior of the cone of Dif. is a possible turn-down 
towards small- t  due to the kinematical factor, denoted 
below by , connecting the pP structure function 
with the total cross section (see Sec. IV). This tiny effect is 
located in the kinematical region where Coulomb 
interaction is sizable. However, as noticed in Ref. [4], in 
DD processes, the Coulomb interaction, at small squared 
momentum transfers, is suppressed compared to that in 
elastic diffractive pp scattering, allowing for a better 
determination of the strongly interacting part of the 
amplitude (in pp; at small  this is possible only indirectly, 
by means of the Bethe-Heitler interference formula). 

2201.0 GeVt <<

21~ GeVt

)MF(t, 2

t

3. M2-dependence. The data compilation for SD 
processes form different experiments (ISR, Fermilab, 
Tevatron e.g. see Ref. [1]) shows that the small- 2M  
region, is full of resonances. In most of the papers on the 
subject this resonance structure is ignored and it is 
replaced by a smooth function 2~ −M allegedly 
approximating the resonances. Moreover, this simple 
power-like behavior is extended to the largest available 
missing masses. In sec. IV we question this point on the 
following reasons: a) the low- 2M  resonances introduce 
strong irregularities in the behavior of the resulting cross 
sections; b) the large- 2M  behavior of the amplitude 
(cross sections) is another delicate point. Essentially, it is 
determined by the proton-Pomeron (pP) total cross 
section, proportional to the pP structure function, 
discussed in details in Sec. IV. By duality, the averaged 
contribution from resonances sums up to produce high 
missing-mass Regge behavior ( , where n is related 
to the intercept of the exchanged Reggeon (essentially, 
that of the f trajectory). Furthermore, according to the 
ideas of two-component duality, see e.g. [7], the cross 
sections of any process, including that of  ,is a 
sum of a non-diffractive component, in which resonances 
sum up in high-energy (here: mass) Regge exchanges and 
the smooth background (below the resonances) is dual to a 
Pomeron exchange. The dual properties of Diff. can be 
quantified also by finite mass sum rules, see [1]. In short: 
the high-mass behavior of the cross section is a 
sum of a decreasing term going like 

)nM 2−

XpP →

XpP →
2~ −M  and a 

"Pomeron exchange" increasing slowly with mass. All this 
has little affect on the low-mass behavior at the LHC, 
however normalization implies calculation of cross 
sections integrated over all diffraction region up to 

05.0<ξ . 

3. Factorization relation 
 
So, with the advent of the LHC, diffraction, elastic and 

inelastic, entered a new area, where it can be seen 
uncontaminated by non-diffractive events. In terms of the 
Regge-pole theory this means, that the scattering 
amplitude is completely determined by a Pomeron 
exchange, and in a simple-pole approximation, Regge 
factorization holds and it is of practical use! Note that the 
Pomeron is not necessarily a simple pole: pQCD suggests 
that the Pomeron is made of an infinite number of poles 
(useless in practice), and the unitarity condition requires 
corrections to the simple pole, whose calculation is far 
from unique. Instead a simple Pomeron pole 
approximation [8] proved to be efficient in describing a 
variety of diffractive phenomena. 

The DL elastic scattering amplitude is simply: 

( ) ( ) ( )( ) ( ) ( )tsAsstttsA R
tIP ,, 1

0 += −αβξ ,    (1) 

where ( ) 2πξ iet =  is the signature factor, and 

( ) ttIP 25.004.1 +=α  is the Pomeron trajectory. The 
residue is chosen to be a simple exponential, ( ) tbPet =β  

with [3]. "Minus one" in the power of 
(1) anticipates of norm  the scale 

parameter  isn’t fixed by the Regge-pole theory: it can 
be fitted do the data or fixed to a "plausible" value of a 
hadronic mass, or to the inverse "string tension" (inverse 
of the Pomeron slope), 

1
4.8

−
= GeVbP

( ) ( )0,Im == tsAstotσ

0s

'10 α=s  according to DL. The 
second term in Eq. (1), correspond to sub-leading 
Reggeons, has the same functional form as the first one 
(Pomeron), just the values of the parameters differ. We 
ignore this term for reason mentioned above. 

Factorization of the Regge residue ( )tβ  and the 
"propagator" ( ) ( ) 1

0
−tIPss α is a basic property of the 

theory. As mentioned, at the LHC for the first time, we 
have the opportunity to test directly Regge-factorization, 
since the scattering amplitude is dominated by a simple 
Pomeron-pole exchange, identical in elastic and inelastic 
scattering. Simple factorization relations between elastic, 
single and double are known from the literature [1]. 

dt
d

dtdM
d

dtdM
d

dMdtdM
d elSDSDDD σσσσ

2
2

2

2
1

2

2
2

2
1

3

=   (2) 

4. Model for single and double diffraction 
dissociation 

The construction of our model relies on the following 
premises: 

1. Regge factorization. This is feasible since, as 
stressed repeatedly, at the LHC energies and for , 
typical of diffraction, the contribution from secondary 
Reggeons is negligible, and, for a single Pomeron term, 
factorization is exact; 

21GeVt <

2. Due to factorization, the relevant expressions for the 
cross sections (elastic, SD, DD) are simple, as written 
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below, (3-5). Such relations are known from the literature, 
see e.g. [1] and references therein; 

3. The inelastic pPX vertex receives special care. 
Following Refs. [9,10] we consider this vertex as a deeply 
inelastic process, similar to the Xp →γ  vertex in lepton-
hadrons DIS e.g et HERA or JLab. The virtual photon of 
DIS here is replaced by the (virtual) Pomeron with an 
obvious change of typical of DIS to 2Q t−  in the present 

 sub-processes the total c.m. energy here being 
M. There is one important difference between the two, 
namely the quantum numbers of the Pomeron and the 
photon (positive and negative C parities, respectively). 
However, this is not essentially since the dynamics is the 
same and the produced states in the pP system will be 
those of the relevant nucleon trajectory with the right 
quantum numbers (see below). Contrary to Jaroszewicz 
and Landshoff [10], who use the Regge asymptotic (in the 
missing mass) form of the Pp structure function and, 
consequently the triple Pomeron limit, leaving outside the 
low-M resonance structure, we concentrate on the low-M 
resonance region with and use a "Reggeized Breit-
Wigner" formula for the structure function elaborated in 
ref.[9] (see also earlier citations therein). By duality, the 
relevant sum of the two parts (low- and high missing 
mass) should be equivalent. This interesting feature of 
Dif. was studied in the 70-ies (see [1] and references 
therein), and it merits to be revived. 

XpP →

4. The background is always a delicate issue. In the 
reactions (SD, DD) under consideration there are two 
sources for the background. The first is that related to the t 
channel exchange and can be accounted for by rescaling 
the parameter s0 in the denominator of the Pomeron 
propagator. In any case, at high energies, i.e. those of the 
LHC, this background is included automatically in t-
channel Pomeron exchange. The second type of 
background comes from the sub processes . The 
Pp total cross section at high energies (here: missing 
masses) has two components: a decreasing one dual to 
direct-channel resonances and going as 

XpP →

( )02αM , where 
)0(α  is the intercept of the effective (non-leading) Regge 

trajectory exchanged in the cross-channel of the sub 
process, and a background below the resonances, whose 
dual is a slowly rising term. There is some freedom in 
choosing the background and they are important in fixing 
the normalization, compatible with earlier measurements. 

In this section we consider only single (SD) and double 
(DD) diffraction dissociation of the proton at LHC energies. 
Central diffractive production will be treated elsewhere. We 
follow the dual-Regge approach of Ref. [9], but simplify the 
expressions for Pp inelastic form factors (transition 
amplitudes) by replacing them with high-energy Pomeron-
proton total cross sections, dominated by Pomeron exchange. 
The resulting cross sections are: 

,)/)(( )1)((2
0

4
2
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Pel
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where: 
tt ααα ′+= )0()( ,     ,)( tb inetf =

,

71.0
1

1)( ttF P

−
=

 
,

))/(41(4
)1(),( 22 txm

xt
txF

Bs

B
B −+

−−
=

πα                      (7)
 

.)(),( 222 є
p
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norm MMeBMtBg

bg
in

π+−=                   (8)
 

5. Results  

Table 1: Parameters set 

 
 
As the input, elastic cross section and the slope of the 
cone for elastioc cross section for pp scattering from 
TOTEM were also used: 

mbTeVel 2.12.08.24)7( ±±=σ , 
-2

el GeV 0.3  ±0.2  ±20.1 = (7TeV)B . 

 
Figure 1: Double differential cross sections, 05.0= −t . 
Comparison to of calculated cross section reference line 
(see. Fig.3,a). mbSD 10≈σ . 
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Figure 2: Double differential cross sections, 05.0−=t . 
Comparison of calculated cross section to the reference 
line (see. Fig.3, b). Normalization: mbSD 10≈σ . 

 
(a) 

 
(b) 

Figure 3: Reference points for 
2

2

dtdM
d SDσ . 

     (a) For t , from [7];  05.0−=
     (b) For  , form [8]. 5.0−=t

 

Figure 4: Single diffraction cross section vs. s . 
Normalization: mb10SD ≈σ . 

 
(a) 

 
(b) 

Figure 5: Single defraction cross section vs. s . 
 (a) Goulianos [7]; 
 (b) With the new preliminary points form ALICE [9]. 
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Figure 6: B-Slopes for differential SD cross section as 
a function of t for appropriate M2 values. with 
normalization mbSD 10≈σ . 

 
Figure 7: B-Slopes for differential SD cross cross section 
integrated in the region of the first 
resonance [ ]21.3:0.2 GeVM ∈ . Normalization . 16≈SDσ

 
Figure 8: B-Slopes for differential SD cross section 
integrated in the region of the resonances mbSD 10≈σ , 
normalization mbSD 10≈σ . 

 
Figure 9: Double differential SD cross sections as a 
function of M2 for different t values. normalization 

mbSD 10≈σ . 

 
Figure 10: Double differential SD cross sections as a 
function of t for different 2M  values. 
Normalization mbSD 10≈σ . 

 

Figure 11: Single differential SD cross sections as a 
function of M2 integrated over the region [ ]0.1:0.0∈t , 
normalization mbSD 10≈σ . 
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Figure 13: Single differential SD cross sections 
integrated in different M2 regions as a function of t, 
normalization mbSD 10≈σ . 
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