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ABSTRACT. Recent observations are the evidence of 

a large-scale magnetic field in discs around classical T 
Tauri stars. A model of the axisymmetric thin 
protoplanetary disk in a global magnetic field is 
considered. A compressible magnetohydrodynamic set of 
equations is solved by using the explicit numerical 
method. The influence of a magnetic field and various 
turbulent kinematic and magnetic viscosity coefficients on 
the accretion rate in the disk is investigated. 
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1. Introduction 
 
The origin of an angular momentum transport remains 

one of the central problems in the accretion disk theory, as 
molecular viscosity cannot provide the necessary 
accretion rate. 

N.I.Shakura and R.A.Sunyaev (1973), D.Lynden-Bell 
and J.Pringle (1974) had noted that turbulence would 
cause enhanced viscosity. Several angular momentum 
transport mechanisms were offered such as convection, 
nonlinear hydrodynamic instability, gravitational 
instability and perturbations caused by external 
influences. However neither of them can transfer angular 
momentum for required time. 

Progress has been made with the discovery of 
magnetorotational instability (MRI). MRI, originally 
studied by E.P.Velikhov (1959) and S.Chandrasekhar 
(1961), was applied to astrophysical disks by S.Balbus 
and J.Hawley (1991, 1992). MRI arises in a differentially 
rotating disk in the presence of a weak magnetic field. 
Numerical simulations (Hawley, Gammie, Balbus, 1995, 
1996) have shown that MRI led to turbulence, transported 
the angular momentum outward and acted as a 
hydromagnetic dynamo, i.e. sustained magnetic field in 
the presence of dissipation. 

It has been shown that in the so-called dead zone 
between active layers in protoplanetary disks, MRI cannot 
operate (Gammie, 1996). However the account of non-
ideal effects such as Hall effect and ambipolar diffusion 
resulted in changing the stability and the saturation of 
MRI in weakly-ionized protoplanetary disks (Balbus, 
Terquem, 2001; Wardle, 1999, 2007). 

In recent years direct measurements have shown a clear 
evidence of the magnetic field in protostellar disks. The 
existence of a significant azimuthal magnetic field of 
about 1 kG has been confirmed by observations around 

FU Orionis in the innermost regions of its accretion disk 
(Donati et al., 2005). Furthermore observations and 
analysis of a magnetic field on the surface of classical T 
Tauri stars suggest a strong octopolar field (~1.2 kG) and 
a smaller dipolar field (~0.35 kG) (Donati et al., 2007). 

It should be noted that MRI is stable in a strong 
magnetic field and generation of a large-scale magnetic 
field by MRI is not observed (Brandenburg, Nordlund, 
Stein, 1995; Hawley, 2001). 

Recently F.Ebrahimi and S.Prager (2011) have 
explored the possibility of an angular momentum 
transport in disks by tearing instabilities of plasma, which 
can exist in strongly magnetized regions, for instance, 
coronas. The effectiveness of it is equivalent to α ~ 0.01 
by the authors’ estimation. 

Thus magnetic fields play an important role in accretion 
all across the disk. So it is reasonably to examine the 
influence of a magnetic field on the accretion rate in a 
global scale. This paper studies the 2D evolution model of 
a protoplanetary disk in a large-scale magnetic field. 

 
2. Model 
 
The thin gaseous disk evolution is described by the 

following set of equations 
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where t is the time, r is the radial distance, Σ and Σ0 are 
the surface density and its initial value, respectively, u is 
the velocity vector, cs and cs0 are the sound speed and its 
initial value, respectively, A is the vector potential, B is 
the magnetic induction vector, G is the gravitation 
constant, M  is the protosun mass, which equals to the 
modern solar mass, ν is the turbulent kinematic viscosity, 
η is the turbulent magnetic viscosity, γ = 5/3 is the 
adiabatic index and traceless strain rate tensor 
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The pressure gradient acceleration in the equation of 
motion is expressed in terms of squared sound speed and 
logarithmic surface density gradient 
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The turbulent kinematic viscosity is defined according 
to the standard prescription (Shakura, Sunyaev, 1973) 

2
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Ω
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where Ω is the angular velocity, α is the dimensionless 
parameter. 

The turbulent magnetic viscosity according to 
(Campbell, 1997) may be specified similarly to the former 
one with the parameter β 

2
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η = β
Ω
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The resulting magnetic field is 
B = BBd + BextB , 

where BBd = ∇ × A is the proper disk magnetic field, 
BextB  = (0,0,BBext,z) is the external magnetic field with a 
vertical component only. 

The disk model is considered in polar coordinates 
(r, φ). The origin of coordinates is the center of the star 
and the coordinate plane coincides with the equatorial 
plane of a disk. The disk is suggested to be axisymmetric. 
The modeling region extends from 0.5 to 1.5 AU. 

 
3. Numerical method 
 
Numerical simulations are performed with the help of 

Pencil Code (Brandenburg, 2003). The modeling area is 
covered by a grid with n = 1200 points and constant 
spacing Δr. Spatial derivatives are approximated by the 
sixth order finite differences 
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where i = 1,...,n. Also the continuity equation is 
complemented by an upwinding term. 

A time derivative is calculated by the third order 
explicit Runge-Kutta method. The time step Δt is derived 
from the Courant–Friedrichs–Lewy condition. 

At the initial time moment the surface density is 
Σ0 = 2000 g/cm2, the sound speed cs0 = 1.5·105 cm/s, the 

azimuthal velocity has Keplerian profile 0 /u GMϕ = r , 
the radial velocity and the vector potential in the disk are 
zero. 

At the left edge (nearer to the star) and at the right edge 
(farther from the star) the grid is appended by three 
boundary points. Thus the general number of points is 
N = n + 6. At the each time step the boundary conditions 
are applied as in Table 1. 

 
Table 1: Boundary conditions 

Boundary values 
Physical quantity at the left in 

r-2, r-1, r0

at the right in 
rn+1, rn+2, rn+3

Surface density Copy of Σ(r1) 2000 g/cm2

Radial velocity Copy of ur(r1) Copy of ur(rn) 
Azimuthal 
velocity 

Asymmetric 
extrapolation* 

Keplerian / iGM r  

Vector potential Asymmetric 
extrapolation* 

Asymmetric 
extrapolation** 

* V(r1-i) = 2V(r1) − V(r1+i) 
** V(rn+i)= 2V(rn) – V(rn-i), 
i = 1, 2, 3, V  – extrapolated quantity 

 
4. Results 
 
A series of numerical tests was performed with the 

model for various model parameters such as external 
magnetic field, turbulent kinematic and magnetic 
viscosity coefficients. Time-average values of surface 
density, radial velocity, proper disk magnetic field 
(vertical component) and the accretion rate <M′> are 
obtained at the distance of 0.5 AU from the star and 
presented in Table 2. 

The characteristic property of model evolution is a 
mass transfer to the star side, i.e. accretion. There are 
neither artificial inflow nor outflow of mass in 
simulations, but there are only preconditions for it. The 
calculated accretion rate of about 10-7 M /year is the 
result of “free” (as far as boundary conditions allow) 
model evolution and agrees with observations of classical 
T Tauri stars. 

Independently of mass source density (fixed density at 
the outer boundary) the turbulent kinematic viscosity 
provides only finite radial velocity of transfer. In addition 
the more viscosity the more is radial velocity magnitude 
(see models #1, #2 in Table 2). 

In the presence of an external magnetic field and equal 
turbulent kinematic and magnetic viscosities the disk  
obtains a proper magnetic field. The initial unstable state  
excites oscillations of the proper magnetic field and 

 
Table 2: Model parameters and evolution results 

Parameters Calculated values at 0.5 AU # 
BBext,z, G α β <Σ>, g/cm2 <ur>, cm/s <BBd,z>, G <M′>, 10-7 M / year 

Model behavior 

1 – 0,01 – 1538 −394 0 4,4 Steady state 
2 – 0,001 – 1453 −44 0 0,3 Steady state 
3 1 0,01 0,01 1539 −394 −1 4,5 Decaying oscillations, steady state 
4 1 0,001 0,01 1455 −43 −1 0,3 Decaying oscillations, steady state 
5 −1 0,01 0,01 1539 −395 1 4,5 Decaying oscillations, steady state 
6 0,001 0,01 0,001 – – – – Increasing oscillations, scheme instability 
7 −1 0,01 0,001 – – – – Increasing oscillations, scheme instability 
8 −1 0,01 0,05 1359  −360  −41  3,7  Increase of | Bd,z |, scheme instability 
9 0,001 0,01 0,1 1070 −359 58 2,8 Increase of | Bd,z |, steady state 
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Figure 1: Evolution of the model #9. Revolutions about the star are marked at the abscissa. 
 
velocities in the disk. However in the long run the model 
comes to steady state, when the proper magnetic field is 
equal in magnitude and opposite in sign to the external 
field. The proper disk magnetic field of the strength of 
1 G doesn’t influence the accretion rate (see #3, #5). The 
proper magnetic field is decaying when the external field 
is “turned off”. 

In the presence of an external magnetic field and 
different turbulent kinematic and magnetic viscosities 
there are several scenarios: 

1) β = 10α and β ≤ 0,01 – decaying oscillations lead to 
the steady state, in which the magnetic field doesn’t affect 
the accretion rate (see #4). 

2) β = 0,1α and β ≤ 0,001 – increasing oscillations of a 
proper magnetic field and velocities in the disk lead to 
numerical instability, and independently of the magnetic field 
magnitude and orientation in a vertical direction (see #6, #7). 

3) β = 5α, α = 0,01 and |B Bext,z| = 1 – increasing 
magnitude of the proper magnetic field is accompanied by 
the accretion rate reduction, then numerical instability 
occurs (see #8). So the model with the lower external field 
has been examined. 

4) β = 10α, α = 0,01 and |BBext,z| = 0,001 – increasing of 
the proper magnetic field as before is accompanied by the 
accretion rate reduction, but leads to the steady state (see 
#9 and Figure 1). 

Thus in our simulations the growth of the proper 
magnetic field magnitude in a disk reduces the radial 
velocity in the absolute value and hence brings down the 
accretion rate (see #8, #9). 

If new observational data evidence the existence of 
strong magnetic fields in protoplanetary disks it is 
reasonable to take the account of magnetohydrodynamic 
instabilities capable to operate under such conditions, for 
instance, tearing instabilities. 
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