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ABSTRACT. We consider the dynamics of a
two-body system in the model with additional spatial
dimensions compactified on a Ricci-flat manifold.
To define the gravitational field of a system and to
construct its Lagrange function we use the weak-field
approach. It is shown, that to avoid the contradiction
with the experimental restrictions on the value of
PPN-parameter γ, the massive sources must have
nonzero pressure/tension into the extra dimensions
and also must be uniformly smeared there. This fact
leads directly to the absence of the Kaluza-Klein
modes, which looks unnatural from the point of
quantum mechanics.
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1. Introduction

Many modern theories of unification of fundamental
interactions, such as superstring theory and its gen-
eralizations, are based on the Kaluza-Klein (KK) ap-
proach, where the product manifolds with the topology
MD = M4 × Md correspond to the physical space-
time. Here M4 is the (external) 4-dimensional space-
time and Md is a compact (internal) d-dimensional
space. The compactification of extra spatial dimen-
sions enables to unify gravity and the Standard Model
gauge fields.
The models, based on the KK approach, predict the

existence of so-called KK-particles, which correspond
to the excited states of the Standard Model particles
into the extra dimensions. It is experimentally es-
tablished, that the lower limit of masses of the KK-
particles (and, accordingly, the scale of the internal
space) is of the TeV order. Thus, if the scale of extra
dimensions exceeds 14 TeV, then it is impossible to find
KK-particles and to check the existence of additional
dimensions on LHC experiment.
In the light of this fact, it is of interest to inves-

tigate the astrophysical consequences of the Kaluza-
Klein models, which allows to verify or falsify the KK
models with the help of highly accurate gravitational
experiments.
Hereinafter, we accept the following notation:

Greek indices µ, ν run from 0 to 3, µ̃, ν̃ – from 1 to
3 accordingly, while Latin ones M,N run from 0 to
D, m,n = 4, ..., D and M̃, Ñ = 1, ... D, where D
is the total dimensionality of the space. The total
number of additional spatial dimensions is d = D − 3
and D = D + 1. Also XM is for coordinates on MD,
xµ = Xµ is for coordinates on M4 and ym = Xm is
for coordinates on Md.

2. The model

Let
[ĝ

(D)
MN (y)] = [η(4)µν ]⊕ [ĝ(d)mn(y)] (1)

be a background metric tensor field on a D-fold MD.

Here η00 = 1, ηµ̃ν̃ = −δµ̃ν̃ and ĝ
(d)
mn(y) is a certain met-

ric tensor on Md. We perturb this geometric back-
ground introducing the matter in the form of two com-
pact gravitating bodies with rest masses m1 and m2.
We also suppose, that these bodies are pressureless into
the external space (this is a natural assumption for such
bodies as stars) and generally may have certain pres-
sure p into the compact subspace, which is the imma-
nent property of multidimensional particles. Then the
corresponding energy-momentum tensor (EMT) has
the following contravariant components

TMν = ρc2
ds

dx0
uMuν , uM =

dXM

ds
,

Tmn = −pgmn + ρc2
ds

dx0
umun. (2)

Here gMN is a perturbed metric tensor on MD, which
corresponds to the considering matter distribution, and
ds2 = gMNdX

MdXN . Also ρ is the rest mass D-
density of the system. The equation of state into the
internal space p = ωρc2(u0)−1 contains the parameter
of state ω. As we shall see below, ω must be nonzero
to provide an accordance with the gravitational exper-
iments.
The dynamics of a system is investigated within the

framework of a weak-field approach. To construct the
Lagrange function up to 1/c2 terms it is necessary to
define the perturbed metric components g00, g0M̃ and
gM̃Ñ up to 1/c4, 1/c3 and 1/c2 terms respectfully.
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The perturbed metric tensor up to 1/c2 terms reads:

gMN ≈ ĝMN + hMN , gMN ≈ ĝMN − hMN , (3)

where hMN ∼ O(1/c2) and by definition hNM ≡
ĝNThMT . To get these terms we should solve (in cor-
responding order) the multidimensional Einstein equa-
tion:

RMN =
2SDG̃D

c4

[
TMN − 1

D − 1
TL
L gMN

]
. (4)

SD is a total D-dimensional solid angle and G̃D is a
gravitational constant in D-spacetime.
It’s easy to calculate the approximate components

and the trace of (1):

TL
L = Tλ

λ + T l
l ≈ ρc2(1− ωd), (5)

T00 ≈ ρc2, Tµ̃ν̃ ≈ 0, Tmn ≈ −ωρc2ĝmn. (6)

Hence, for the nonzero (up to O(1/c2)) right-hand sides
of (4) we get:

R00 ≈ 2SDG̃D

c2

(
D − 2 + ωd

D − 1

)
ρ, (7)

Rµ̃ν̃ ≈ 2SDG̃D

c2

(
1− ωd

D − 1

)
ρ δµ̃ν̃ , (8)

Rmn ≈ −2SDG̃D

c2

(
1 + 2ω

D − 1

)
ρĝmn, (9)

The approximate (up to 1/c2 terms) Ricci-tensor
components in general case have the following form:

RMN ≈ R̂MN +
1

2

[
−∇̂L∇̂LhMN +QMN

]
, (10)

QMN ≡
[
∇̂M

(
∇̂Lh

L
N − 1

2
∂Nh

L
L

)
+∇̂N

(
∇̂Lh

L
M − 1

2
∂Mh

L
L

)]
−
(
R̂L

NPM + R̂L
MPN

)
hPL

+R̂PMh
P
N + R̂PNh

P
M ; ∂M ≡ ∂

∂XM
.(11)

Hereinafter all symbols marked with ”hats” correspond
to the background metric ĝMN . In particular R̂L

NPM is

an unperturbed Riemann tensor and ∇̂M is a covariant
derivative on the background.
A rather bulky equality (11) may be simplified.

Firstly, we use the freedom of coordinate system choice
and impose the gauge conditions:

∇̂Lh
L
N − 1

2
∂Nh

L
L = 0. (12)

Then a pair of terms in square brackets in (11) is
equal to zero. Secondly, if we take into account the

isotropic character of the considering EMT (1) with re-
spect to the internal space, we may conclude, that the
topology of the internal space remains unchanged after

the matter introduction and [h
(D)
MN ] = [h

(4)
µν ] ⊕ [h

(d)
mn],

where h
(d)
mn = ξĝ

(d)
mn. The prefactor ξ is a certain

scalar field. Taking it into account one can easily
find that the rest of terms in (11) vanishes. Conse-
quently, for the considering matter distribution (1) and
under the accepted gauge conditions (12), the relation
RMN ≈ R̂MN − (1/2) ∇̂L∇̂LhMN is valid. In the gen-
eral case of Ricci-flat internal spaces (R̂mn = 0) we
obtain up to 1/c2-terms:

RMN ≈ −1

2
∇̂L∇̂LhMN ≈ −1

2
∇̂L̃∇̂

L̃hMN . (13)

Then the approximate 00-component of the Einstein
equations reads:

(7), (13) ⇒ −1

2
∇̂L̃∇̂

L̃h00 =
2SDG̃D

c2
D − 2 + ωd

D − 1
ρ .

(14)
Let’s suppose that the physically reasonable solution

h00(X
M̃ ) of the equation (14) exists. Then it describes

the nonrelativistic multidimensional gravitational po-
tential φ of the given matter distribution: h00 ≡ 2φ/c2.
Therefore, using (8), we obtain

−1

2
∇̂L̃∇̂

L̃hµ̃ν̃ = −1

2
∇̂L̃∇̂

L̃

(
1− ωd

D − 2 + ωd
h00δµ̃ν̃

)
.

(15)
Hence

hµ̃ν̃ =
1− ωd

D − 2 + ωd
h00δµ̃ν̃ , (16)

and, analogically

hmn = − 1 + 2ω

D − 2 + ωd
h00ĝmn. (17)

These solutions must satisfy the conditions (12). It’s
not difficult to check, that for the ν-th component of
(12) the equality ∇̂Lh

L
ν −(1/2)∂νh = 0+O(c−3) fulfills,

while for the n-th component we have the equation:

∇̂Lh
L
n − 1

2
∂nh = − ω(D − 1)

D − 2 + ωd
∂nh00 = 0. (18)

We consider a general case ω ̸= 0, hence, to satisfy
(18) we must demand ∂nφ = 0. Obviously, as φ de-
pends only on the external coordinates so does ρ. In
other words, the massive sources must be uniformly
smeared over the internal space: ρ = ϱ3/Vd, where
ϱ3 is a rest mass density into the external space and

Vd{g(d)mn} =
∫
Md

ddy

√
|det(g(d)mn)| is the volume of the

internal space.
For two point-like masses, particularly

ϱ3(r) = [−det(g(4)µν )]
−1/2

∑
i=1,2

miδ(r− ri), (19)
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where r = (x1, x2, x3), and ri is a position vector of
the i-th particle.
Then the equation (14) is reduced to a 3-dimensional

Poisson equation:

△3φ(r) = 4πGN

∑
i=1,2

miδ(r− ri), △3 ≡
∑
µ̃

∂2µ̃. (20)

The Newtonian gravitational constant is connected
with the multidimensional one as follows:

GN =
SD(D − 2 + ωd)

2πV̂d(D − 1)
G̃D , V̂d ≡ Vd{ĝ(d)mn}. (21)

The solution of (20) is a Newtonian potential:

φ(r) = −GN

∑
i=1,2

mi

|r− ri|
. (22)

As we pointed out above, to construct the Lagrange
function of the considering system up to 1/c2 terms,
we must also define the correction terms f00 ∼ O(1/c4)
and f0µ ∼ O(1/c3) in the expansions g00 ≈ ĝ00+h00+
f00 and g0µ ≈ f0µ. The obtained tensor hMN enable us
to construct the corresponding approximate Einstein
equations. Within the required accuracy, we have for
00 and 0µ̃ approximate covariant components of the
EMT (1) and its trace:

T00 ≈ ϱ3c
2

V̂d

[
1 +

3D − 4 + ωd

D − 2 + ωd

φ

c2
+

v2

2c2

]
, (23)

T0µ̃ ≈ −ϱ3c
V̂d

vµ̃, (24)

T ≈ ϱ3

V̂d
(1− ωd)

[
c2 + φ

D − ωd

D − 2 + ωd
− v2

2

]
. (25)

Here vµ̃ ≡ cdxµ̃/dx0, v2 ≡ δµ̃ν̃v
µ̃vν̃ . Obviously, for

the particle uniformly smeared over the internal space
vm = 0. Hence, the right-hand sides of the approxi-
mate 00 and 0µ̃ components of (4) are

R00 ≈ 2SDG̃D

c2
ϱ3

V̂d

[
D − 2 + ωd

D − 1

+
v2

c2
D − ωd

2(D − 1)
+
φ

c2
3D − 4 + ωd

D − 1

]
, (26)

R0µ̃ ≈ −2SDG̃D

c3
ϱ3

V̂d
vµ̃. (27)

The corresponding left-hand sides are

R00 ≈ 1

c2
△3φ+

1

2
△3

(
f00 −

2

c4
φ2

)
+

2

c4
D − 1

D − 2 + ωd
φ△3φ, (28)

R0µ̃ ≈ 1

2
△3f0µ̃ +

1

2c2
∂0∂µ̃φ . (29)

The solutions of the equations (26)-(28) and (27)-(29)
are (for more details see ref.):

f00 =
2φ2

c4
+

2G2
N

c4

∑
p

mp

|r− rp|
∑
q ̸=p

mq

|rp − rq|

− D − Σ

D − 2 + Σ

GN

c4

∑
p

mpv
2
p

|r− rp|
, (30)

f0µ̃ =
GN

2c3

∑
p

mp

|r− rp|

[
3D − 2− Σ

D − 2 + Σ
vµ̃p + nµ̃p (npvp)

]
,

(31)
where nµ̃p ≡ (xµ̃−xµ̃p )/|r− rp| and (npvp) ≡

∑
µ̃ n

µ̃
pv

µ̃
p .

Thus, now we may construct the Lagrange func-
tion of the system. For the i-th body the Lagrange
function is defined as follows: Li = −mic(dsi/dt) =

−mic
2
√
g00 + 2g0µ̃v

µ̃
i /c+ gµ̃ν̃v

µ̃
i v

ν̃
i /c

2. With the help

of the approximate expressions for g00, g0µ̃ and gµ̃ν̃ ,
we may calculate Li. Further, to get the Lagrange
function L of a hole system, we use the relation
∂L/∂ri = (∂Li/∂r)

∣∣
r=ri

. After a number of calcula-
tions we finally obtain the sought-for approximate La-
grange function L of the two-body system:

L ≈
2∑

i=1

miv
2
i

2
+

2∑
i=1

miv
4
i

8c2
+
GNm1m2

|r1 − r2|

−G
2
Nm1m2(m1 +m2)

2c2|r1 − r2|2

+
GNm1m2

2c2|r1 − r2|

[
D − ωd

D − 2 + ωd
(v21 + v22)

−3D − 2− ωd

D − 2 + ωd
(v1v2)− (nv2)(nv2)

]
,(32)

where n ≡ (r1 − r2)/|r1 − r2|.

3. Experimental restrictions. Conclusions

It’s not difficult to check, that in case ω = −1/2 the
expression (32) exactly coincides with the relativistic
analog. It is of interest to find the empirical restrictions
on the value of the parameter ω, which defines the im-
manent pressure/tension of the matter into the internal
space. Let’s assume for this purpose, that there may
be a certain deviation δω: ω = −1/2 + δω.
From the formula (16), rewritten for a solitary

particle, we conclude that the parameterized post-
Newtonian parameter γ is

γ =
1− ωd

1 + (1 + ω)d
. (33)

The Shapiro time-delay experiment using the Cassini
spacecraft gives: γ = 1+(2.1± 2.3)× 10−5. Hence, for
δω the following limitation is valid

|δω| ≤ d+ 2

2d
× 10−5. (34)
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From the perihelion shift of Mercury experiments it
follows the less strong condition (for details see ref.):

|δω| ≤ 3(d+ 2)

8d
× 10−3. (35)

Anyway, to achieve the accordance with grav-
itational tests, we must introduce the internal
pressure/tension with the parameter of state
ω = −1/2 ± (1/2 + 1/d) × 10−5 for usual as-
trophysical bodies. The interpretation of such
strange immanent non-kinetic pressure/tension of
the matter is not the only problem of the model.
As we have shown in sec. 2, the appearance of
such pressure leads directly to the uniform smear-
ing of the masses over the internal space, and, as
a consequence, to the absence of the excited KK-states.

This fact looks very unnatural from the point of quan-
tum physics. Such situation emerges in all KK-models
with Ricci-flat internal manifolds, e.g. in models with
Calabi-Yau manifolds, which are widely used in the su-
perstring theory.
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