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ABSTRACT. In the previous work of one of the au-
thors the radial motions of charged test particles in the
field of a spherically symmetric charged object in gen-
eral relativity were considered and their classification
was built. The present paper generalizes this approach
to study the motion of particles with non-zero orbital
momentum. We limit the consideration to neutral par-
ticles and stress on the peculiarities that emerge in
the case of the Reissner-Nordström field with super-
extremal charge.

Key words: effective potential, scale invariance, clas-
sification of motions, Reissner–Nordström metric.

1. Introduction

The analysis of test particles motion is a classical
method for studying the space-time structure near a
gravitating massive object. The electric charge of the
gravitational field source, if present, affects substan-
tially the space-time geometry. Search for particles mo-
tion peculiarities that emerge in this case receives con-
siderable attention (see, for example, Chandrasekhar S.
(1983) and other authors in the references) as it con-
stitutes an important part of the investigation of rel-
ativistic configurations. In the present work we study
the radial component of motion for neutral test parti-
cles with mass m and orbital moment L in the field of
a central source with mass M and charge Q. This field
is described by the Reissner-Nordström metric

ds2 = Fc2dt2 − F−1dR2 −R2dσ2, (1)

where

F = 1− 2κM

c2R
+
κQ2

c4R2
, dσ2 = dθ2 + sin2 θdφ2. (2)

Note that we consider all the possible types of spher-
ically symmetric charged objects, namely: Q2 < κM2

- black hole (BH), two horizons, Q2 = κM2 - extreme
BH, twofold horizon, Q2 > κM2 - super-extremal (ab-
normally) charged object or naked singularity (NS).

In the case of static and spherically symmetric field
we have the conservation of particle energy

E = c
√
F

√
m2c2 + F p2R +

1

R2

(
p2θ +

p2φ

sin2 θ

)
, (3)

and the square of the total orbital angular momentum

L2 = p2θ +
p2φ

sin2 θ
= const , (4)

where Pµ = mcdxµ/ds is the particle four-momentum.
These formulae yield the expression for the radial com-
ponent of velocity(

mc2
dR

ds

)2

= E2 − F

(
m2c4 +

c2L2

R2

)
. (5)

2. Scale invariance, new parameters and effec-
tive potential

The problem of how to investigate the motion can be
simplified by using the potential method and scale in-
variance of the system. The dynamical system under
consideration has five parameters: {M,Q,m,E,L}.
However, the number of essential ones is less than five
because the system admits the two-parametric group
G2 of scaling transformations:

Ẽ = E/α, m̃ = m/α, L̃ = L/γ, |Q̃| = α|Q|/γ,
M̃ = αM/γ, R̃ = αR/γ, s̃ = αs/γ . (6)

As a new set of parameters and variables we choose the
independent invariants of the G2 transformations:

ϵ =
E

mc2
, η =

|Q|m
√
κ

c|L|
, µ =

Mmκ

c|L|
,

z =
Rmc

|L|
, τ = s

mc

|L|
, ϖ = ω

|L|
mc2

,

(7)

where {ϵ, η, µ, z, τ} are the reduced energy, charge,
mass, radius and proper time, respectively.
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In their terms equation (5) becomes(
dz

dτ

)2

= ϵ2−1+
2µ

z
− 1 + η2

z2
+
2µ

z3
− η2

z4
= −WV (8)

where WV is the velocity potential. Allowed regions
and turning points can be found from the conditions
WV ≤ 0 andWV = 0, whereas the circular orbits result
from WV = 0, ∂WV /∂z = 0.
Introduction of a suitable potential will further sim-

plify the situation. In our case the energy potential
(see Gladush V., Galadgyi M. (2011)) is the most con-
venient one, which is hereinafter called the effective
potential (Pugliese B., Quevedo H., Ruffini R. (2011))

W 2
ϵ = 1− 2µz−1 + (1 + η2)z−2 − 2µz−3 + η2z−4. (9)

Then the equation of motion becomes

(dz/dτ)
2
+W 2

ϵ = ϵ2. (10)

Now the allowed and forbidden regions and turning
points are determined by the conditions W 2

ϵ ≤ ϵ2 and
W 2

ϵ = ϵ2. As a consequence, the classification of mo-
tions relies on distinguishing different types of the po-
tential W 2

ϵ . Because of the scale invariance, it involves
solely the reduced mass µ and charge η of the central
body.
The circular orbits are determined by conditions

W 2
ϵ = ϵ2, ∂W 2

ϵ /∂z = 0 that lead to algebraic equa-
tions

(1− ϵ2)z4 − 2µz3 + (1 + η2)z2 − 2µz + η2 = 0 ,(11)

µz3 −
(
1 + η2

)
z2 + 3µz − 2η2 = 0 . (12)

For a stable circular orbit, it is necessary to fulfill the
condition of minimum ∂2W 2

ϵ /∂z
2 > 0. If there is an

inflection point, then we have ∂2W 2
ϵ /∂z

2 = 0 that
corresponds to the last circular orbit.

3. Circular orbit radii and their classification

Let us bring the cubic equation for circular orbits (12)
to the standard form

z3 + az2 + bz + c = 0 , (13)

a = −(1 + η2)/µ, b = 3, c = −2η2/µ . (14)

Then the types of its solutions can be established from
the sign of the discriminant

D = (−a2/3 + b)3/27 + (2a3/27− ab/3 + c)2/4 . (15)

Equation (13) may have (i) one real root and a pair
of complex conjugate roots (D > 0); (ii) three real
roots from which at least two are equal (D = 0); (iii)
three different real roots (D < 0). For identifying these
cases, we rewrite the discriminant as

D = (1− µ2
+µ

−2)(1− µ2
−µ

−2) , (16)

72µ2
± = 3

(
1 + 14η2 + η4

)
±

±
√
3
(
1− 5η2

)√
(3 + η2) (1− 5η2)

(17)

Figure 1: The curve D = 0 in the plane of parameters
(x = η2, y = µ2) and the different regions of the roots.

In the (µ, η) plane the equality D = 0 is the boundary

of the curvilinear angle Γ(2) = Γ
(2)
bh

∪
Σ

(2)
ns , which is

depicted in Fig.1 by a heavy line and corresponds to
the case of multiple roots (z1 = z2, z3 or z1, z2 = z3 ).
The point p(3) ∈ Γ(2), is associated with the triple root

(z1 = z2 = z3). The region D(3) = D
(3)
bh

∪
D

(3)
ns that

lies inside the angle Γ(2) refers to the case of D < 0,
i.e., to three different real roots z1, z2, z3. For points
that lie outside the angle Γ(2), in the region D(1) =

D
(1)
bh

∪
D

(1)
ns , we have D > 0. Here one root is real

z3 (a circular orbit) whereas two others are complex
z1 = m1 + im2, z2 = m1 − im2.
Note that the dotted line η2 = µ2 corresponds to

the extreme BH. The regions above and below the line
η2 = µ2 relate to BH (η2 > µ2) and NS (η2 < µ2)
respectively.

4. Parameterization in terms of circular orbits
radii and classification of effective potentials

The roots of equation (13) and its coefficients (14) are
interrelated as follows

z1 + z2 + z3 = (1 + η2)/µ , z1z2z3 = 2η2/µ ,

z1z2 + z1z3 + z2z3 = 3 .
(18)

Taking into account these formulae, we obtain the
parametrization for the effective potential (9) in terms
of the roots of equation (13), i.e. in terms of the circu-
lar orbits radii,

W 2
ϵ = 1− µ

z

(
2− z1 + z2 + z3

z
+

2

z2
− z1z2z3

2z3

)
, (19)

µ = (z3 + z2 + z1 − z1z2z3/2)
−1, η2 = µz1z2z3/2 . (20)

This representation permits us to reduce the problem
of classifying the trajectories to the task of identifying
the type of the potential.
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In the case of multiple roots, when z2 = z3, we get

W 2
ϵ = 1− µ

z

(
2− z1 + 2z2

z
+

2

z2
− z1z

2
2

2z3

)
. (21)

while µ = 2(2z1 +4z2 − z1z
2
2)

−1, (2z1 + z2) z2 = 3. At
the point z = z1 the potential has an inflection. In the
case of the triple root z1 = z2 = z3 we have

W 2
ϵ = 1− 0.4z−1(2− 3z−1 + 2z−2 − 0.5z−3) , (22)

and µ = 0.4, η = 1/
√
5, z1 = 1.

In Fig. 1 the regions of parameters {µ, η} for the
different types of the potential are shown. Choosing
an arbitrary point inside each of these regions and cal-
culating the roots of equation (13), we compose the
potential according to (19). Some plots of W (z) are
given in Figs. 2 and 3. Here the allowed regions for
particles with given energy ε are the horizontal line seg-
ments W 2

ϵ = ε2 = const bounded by the intersection
points with the curve W 2 =W 2(z) (turning points).

Figure 2: Effective potential versus radius z for differ-
ent regions in the plane of parameters (η2, µ2).

Figure 3: The same as Fig. 2 for other regions.

In Tables 1-3 we list the values of circular orbit
radii z and particle energies ε calculated for parame-
ters (η2, µ2) selected from the regions that correspond
to different signs of D, assuming the super-extremely
charged object (η2 > µ2).

Table 1: Circular orbit radii and energies of particles
for selected values of parameters, D > 0.

D
(3)
ns D

(3)
ns

µ 0.314 0.356
η 0.334 0.382
z 0.5 |0.6 |2.455 0.5 |0.9 |1.821
ε 1.017|1.019|0.944 0.896|0.933|0.538

Table 2: The same as Table 1, D = 0.
Γ
(2)
ns Γ

(2)
bh P (3)

µ 0.373 0.294 0.40
η 0.398 0.318 0.447
z z1 = 0.5|z2,3 = 1.3 z1,2 = 0.5|z3 = 2.75 z1,2,3 = 1
ε 0.84 | 0.91 1.071 | 0.954 0.894

Table 3: The same as Table 1, D < 0.

D
(1)
ns D

(1)
ns D

(1)
ns

µ 0.447 0.387 0.3
η 0.632 0.410 0.354
z 2.111 0.5 2.778
ε 0.903 0.793 0.951

A more detailed analysis of all the types of particles
motion will be presented elsewhere.

5. Conclusion

Thus we have derived the characteristics of neutral
particles motion in the field of the super-extremally
charged object. The main peculiarity of this motion
is that there may exist bound states with energy
greater than the rest value (ε > 1). For example,

this occurs for the effective potential from D
(3)
ns (see

Fig. 2) where the finite motions for the object with
µ = 0.314, η = 0.334 are allowed, so that the particles
with energy ε = 1.017 move along the circular orbit
with radius z = 0.5. As seen from Fig. 2, the curve

Γ
(2)
bh for the object with µ = 0.294, η = 0.318 has an

inflection point at the radius z = 0.5 that corresponds
to the last stable circular object with energy ε = 1.071.
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