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ABSTRACT. The Coma cluster of galaxies is stud-
ied as a giant aggregation of dark matter and baryons
embedded in the dark energy background. Key theory
relations for the local dark-energy effects are given.
On the basis of the theory and current observational
data, three characteristic masses of the Coma cluster
are introduced and evaluated. A new dark matter
mass profile is suggested and used to find the upper
bounds on the total mass and total size of the cluster.
A solution is obtained for the hydrodynamic outflow
of the polytropic gas from the gravitating center,
in presence of the uniform Dark Energy (DE). The
main property of the wind in presence of DE is
its unlimited acceleration after passing the critical
point. In application of this solution to the winds
from galaxy clusters we suggest that collision of the
strongly accelerated wind with another galaxy cluster,
or with another galactic cluster wind could lead to the
formation of a highest energy cosmic rays.

Key words: galaxies: the Coma Cluster, dark
matter, dark energy, gas outflow

1. Introduction

We study the famous Coma cluster of galaxies
where dark matter was originally found by Zwicki
(1933,1937). Zwicky used the virial theorem to show
that non-luminous dark matter dominated the clus-
ter on megaparsec scales. He estimated the cluster
total mass as 3 × 1014M⊙, if to normalize his figure
to the presently adopted value of the Hubble constant
h = 0.71 which is used hereafter. A half-century later,
The & White (1986) found an order of magnitude
larger value, 2 × 1015M⊙, with a modified version of
the virial theorem. Hughes (1989, 1998) obtained a
similar value (1− 2)× 1015M⊙ with X-ray data under
the assumption that the cluster hot intergalactic gas is
in hydrostatic equilibrium. With a similar assumption,
Colles (2006) reports the mass 4.4×1014M⊙ inside the
radius of 1.4 Mpc. A weak-lensing analysis gave the
mass of 2.6 × 1015M⊙ (Kubo et al. 2007) within 4.8

Mpc radius. Geller et al. (1999, 2011) extended mass
estimates to the outskirts of the cluster using the caus-
tic technique (Diaferio & Geller 1997, Diaferio 1999)
and found the mass 2.4×1015M⊙ within the 14 Mpc ra-
dius. Taken the figures at face value, one may see that
the mass within 14 Mpc appears to be smaller than the
mass within 4.8 Mpc. Most probably, this is due to un-
certainties in mass determination. Indeed, the 2σ error
is 1.2×1015M⊙ in Geller’s et al. (1999,2011) data, and
within this uncertainty, the result does not contradict
the small-radius data.
In this paper, we consider the Coma cluster as a gi-

ant gravitationally bound aggregation of dark matter
and baryons embedded in the uniform background of
dark energy. Is antigravity produced by dark energy
significant in the volume of the cluster? Does it alter-
nate the structure of the cluster? Can antigravity put
limits on the major gross parameters of the system?
Addressing these questions, we continue our efforts to
clarify and quantify the local gravity-antigravity inter-
play on the spatial scales of ∼ 1 − 10 Mpc (Chernin
2001,2008,2013, Bisnovatyi-Kogan and Chernin 2012).
A solution is presented of hydrodynamic equations

for the winds from galactic clusters in presence of
DE. It is a generalized solution for the outflows from
the gravitating body, obtained for solar and stellar
winds by Stanyukovich (1955) and Parker (1963), to
the presence of DE. It implies significant changes in
the structure of solutions describing galactic winds,
what had been investigated in the paper of Bisnovatyi-
Kogan and Merafina (2013).

2. Local antigravity produced by dark energy

The local dynamical effects of dark energy can ade-
quately be described in terms of Newtonian mechanics,
if the force field it produces is weak in the standard
sense. Such an approach borrows from General Rela-
tivity the major result: the effective gravitating density
of a uniform medium is given by the sum

ρeff = ρ+ 3P, (1)
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where ρ and P is the density and pressure of a uniform
fluid (the speed of light is 1 hereafter). The dark en-
ergy equation of state is PDE = −ρDE, and its effective
gravitating density is negative:

ρDEeff = ρDE + 3PDE = −2ρDE < 0, (2)

which means that dark energy produces antigravity.
Einstein’s ”law of universal antigravity” says that

two bodies imbedded in the dark energy background
are repulsed from each other with a force that is pro-
portional to the distance r between them:

FE(r) = −4πG

3
ρDEeffr

3/r2 = +
8πG

3
ρDEr. (3)

Eq.(3) may be use to describe the force field produced
by a spherical matter mass MM and the uniform dark
energy background in which the mass is embedded:

F (R) = FN (R)+FE(R) = −GMM

R2
+

8πG

3
ρDER. (4)

Eq.4 shows that the net force F (R) is zero at the dis-
tance

R = RZG = [
MM

8π
3 ρDE

]1/3 = 11
MM

1015M⊙
Mpc. (5)

Here the observed value of the dark energy density
ρDE = 0.7× 10−29 g/cm3 is used.The critical physical
parameter RZG is the zero-gravity radius (Chernin
2001). Gravity dominates at distances R < RZG,
while antigravity is stronger than gravity at R > RZG.

3. Three masses of the cluster

The presence of dark energy in the volume of a clus-
ter like the Coma cluster may be quantified by the ef-
fective gravitating mass of dark energy within a given
clustrocentric radius R:

MDE(R) =
4π

3
ρDEeffR

3 = −8π

3
ρDER

3 (6)

−0.85× 1012[
R

1Mpc
]3M⊙.

The matter (dark matter and baryons) content of the
cluster is characterized (in the spherical approxima-
tion) by the mass MM (R) inside the radius R:

MM (R) = 4π

∫
ρ(R)R2dR. (7)

Here ρ(R) is the matter density within the sphere of
the radius R inside the cluster. The sum

MG(R) =MM (R) +MDE(R), (8)

is the total gravitating mass within the radius R. Since
dark matter and dark energy reveal themselves in ob-
servations via their gravitation only, it is the mass
MG(R) that is only available for astronomical measure-
ments. IdentifyingMG(R) with the value 2.4×1015M⊙
found in the Coma observations (Geller et al.1999) for
the radius R = 14 Mpc, we find for this radius:

MDE = −2.3×1015M⊙, MM = 4.7×1015M⊙ ≃ 2MG.
(9)

As we see, the absolute value of the dark energy
mass MDE is (almost exactly) equal to the gravitating
mass MG at R = 14 Mpc; as a result, the matter
mass MM ≃ 2MG ≃ 2|MDE |, within this radius. This
implies that the antigravity effects are strong indeed
at large radii of the Coma cluster.

4. Matter mass profile

Our estimate of the Coma matter mass within R =
14 Mpc (Eq.11) may be compared with estimates fol-
lowing from traditional matter density profiles for dark
halos. The widely used NFW profile (Navarro et al.
1999) is

ρ =
4ρs

R
Rs

(1 + R
Rs

)2
, (10)

where R is again the distance from the cluster center,
ρs = ρ(Rs), and Rs are constant parameters. At small
radii, R << Rs, the matter density goes to infinity,
ρ ∝ 1/R as R goes to zero. At long distances, R >>
Rs, the density slope is ρ ∝ 1/R3. With this profile,
the matter mass profile is

MM(R) = 16πρsR
3
s[ln(1 +R/Rs)−

R/Rs

1 +R/Rs
]. (11)

To find the parameters ρs and Rs, we may use the
small-radii data from Sec.1: M1 = 4.4 × 1014M⊙ at
R1 = 1.4 Mpc, M2 = 2.6 × 1015M⊙ at R2 = 4.8 Mpc.
At these radii, the gravitating masses are nearly equal
to the matter masses there. The values of M1, R1 and
M2, R2, together with Eq.11 lead to two logarithmic
equations for the two parameters of the profile, which
can easily be solved: Rs = 4.7 Mpc, ρs = 1.8 ×
10−28 g/cm

3
. Then we find the matter mass within

R = 14 Mpc,

MM ≃ 8.7× 1015 M⊙ , (12)

to be considerably larger (over 70%) than given by
Eq.11.
Another popular density profile (Hernquist 1990) is

ρ(R) ∝ 1

R(R+ α)3
. (13)

Its small-radius behavior is the same as in the NFW
profile: ρ → ∞, as R goes to zero. The slope at large

Odessa Astronomical Publications, vol. 26/2 (2013) 143



radii is different: ρ ∝ 1/R4. The corresponding mass
profile is

MM(R) =M0[
R

R+ α
]2. (14)

The parametersM0 and α can be found from the same
data as above on M1, R1 and M2, R2: M0 = 1.4 ×
1016 M⊙, α = 6.4 Mpc, giving another value for the
mass within 14 Mpc:

MM = 6.6× 1015M⊙, R = 14 Mpc. (15)

Now the difference from the figure of Eq.9 is about
40%.
In a search for a more suitable mass profile for the

Coma cluster, we may try the following simple new
relation:

MM(R) =M∗[
R

R+R∗
]3. (16)

This mass profile comes from the density profile:

ρ(R) =
3

4π
M∗R∗(R+R∗)

−4. (17)

The density goes to a constant as R goes to zero; at
large radii, ρ ∝ 1/R4, as in Hernquist’s profile.
The parameters M∗ and R∗ are found again from

the data for the radii of 1.4 and 4.8 Mpc: M∗ = 8.7×
1015 M⊙, R∗ = 2.4 Mpc. The new profile leads to a
lower matter mass at 14 Mpc:

MM = 5.4× 1015M⊙, (18)

which is equal to the Eq.9 value within 15% accuracy.

5. Upper limits and beyond

The strong effect of dark energy at large radii puts
an absolute upper limit on the total size of the cluster.
The system can be gravitationally bound only if gravity
dominates in its volume (as we mentioned above). In
terms of the three different masses, this criterion may
be given in the form

MG ≥ 0, MM ≥ |MDE|. (19)

Both inequalities are met, if the system is not larger
than its zero-gravity radius (Eq.5): R ≤ Rmax = RZG.
If the radius of a system with matter mass MM is

equal to the maximal radius R = Rmax, its mean mat-
ter density (see Bisnovatyi-Kogan & Chernin 2012) is

⟨ρM⟩ = MM
4π
3 R

3
ZG

= 2ρDE. (20)

This relation and the new profile (Eq.16) now lead to
Rmax and the corresponding matter mass, Mmax =
MM(Rmax):

Rmax = RZG = 20 Mpc,
Mmax =MM(RZG) = 6.2× 1015M⊙.

(21)

The upper mass limit evaluated by Eq.(21) is consis-
tent with the theory of large-scale structure formation
that claims the range 2× 1015 < M < 1016M⊙ for the
most massive bound objects in the Universe (Holz &
Perlmutter 2012, Busha et al. 2005)
For comparison, the two profiles mentioned above

lead to somewhat larger values of the sizes and mass:

Rmax = 25 Mpc, Mmax = 1.5× 1016M⊙ (NFW),
(22)

Rmax = 22 Mpc, Mmax = 9.1× 1015M⊙ (Hernquist).
(23)

Our studies of nearby systems like the Local Group
and the Virgo and Fornax clusters (Karachentsev et al.
2003, Chernin 2008, Chernin et al. 2006, 2007, 2010,
2012a,b, Chernin 2013) show that their sizes are near
the zero-gravity radii. The systems are located in the
gravity-dominated regions (R < RZG), and the out-
flows of galaxies are observed at R > RZG. Basing on
these examples, we may suggest that the Coma clus-
ter has the maximal possible size and mass given by
Eq.(21). If this is the case, the mean matter density
of the system = twice the dark energy density. This
prediction (Merafina et al. 2012; Bisnovatyi-Kogan &
Chernin 2012) does not depend on the density profile
assumed for the cluster. Basing on this result and using
the cosmological matter density parameter Ωm = 0.27,
we may calculate the mean matter density contrast in
the cluster:

δ =
⟨ρ⟩ − ρm
ρm

=
2ΩDE

Ωm
− 1 = 4.2 . (24)

An observational confirmation of this figure would di-
rectly indicate the key role of dark energy in the for-
mation of the structure of the system.
Another general prediction based on the same anal-

ogy with the earlier studied groups and clusters con-
cerns the galaxies in the environment of the Coma clus-
ter. We may assume that beyond the Coma size limit,
at R > Rmax = RZG, there are galaxies that are not
gravitationally bound with the cluster and move away
from it. They may form a quasi-regular outflow in
the area of the dark energy domination. The radial
motions of the outflow galaxies are controlled by the
equation of motion that takes into account both gravity
and antigravity forces given by Eqs.(4):

R̈ = −GMM

R2
+

8πG

3
ρDER, (25)

where MM is the total matter mass of the cluster and
R ≥ RZG.
The first integral of the equation of motion is the

mechanical energy of a galaxy (per unit mass):

E =
1

2
V 2 − GMM

R
− 4πG

3
ρDER

2. (26)

It is seen from Eq.(25) that at large distances, at
R >> Rmax = RZG, the flow tends to the regular
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kinematical structure with the Hubble linear velocity-
distance relation:

V (R) → HΛR, (27)

where HΛ = [8πG3 ρDE]
1/2 = 61 km/s/Mpc depends on

the dark energy density only.
It is also seen from Eq.(26) that at all distances R ≥

Rmax = RZG the outflow velocities are higher than a
critical value:

V ≥ Vesc = HΛR[1 + 2(RZG/R)
3 − 3(RZG/R)

2]1/2.
(28)

The value Vesc corresponds to the minimal mechanical
energy

Eesc = −3

2
H2

ΛR
2
ZG, (29)

needed for a particle to leave the potential well of the
cluster and join the outflow. The lower limit for the
outflow velocities is the theory prediction which may
be tested in current and future observations of the
Coma environment.

6. Newtonian approximation in description
of galactic winds in presence of DE

In the Newtonian approximation, in presence of DE,
we have the following hydrodynamic Euler equation for
the spherically symmetric outflow in the gravitational
field of matter and DE

ρv
dv

dr
+
dP

dr
= −ρ

(
Gmm

r2
− Λc2r

3

)
(30)

= −ρ
(
Gmm

r2
− 8πGρΛr

3

)
.

Here ρ and P are a matter density and pressure, re-
spectively, mm is the mass of the matter inside the
radius r. We use here DE in the form of the Einstein
cosmological constant Λ. Newtonian gravitational po-
tentials produced by matter Φg, and ΦΛ by DE, satisfy
the Poisson equations

∆ΦΛ = −8πGρΛ, ∆Φg = 4πGρ, ρΛ =
Λc2

8πG
. (31)

We consider, for simplicity, the outflow in the field of
a constant mass (like in stellar wind) mm = M . The
Eq. (30) in this case is written as

ρv
dv

dr
+
dP

dr
= −ρ

(
GM

r2
− Λc2r

3

)
(32)

= −ρ
(
GM

r2
− 8πGρΛr

3

)
.

The Eq. (30) should be solved together with the con-
tinuity equation in the form

4πρvr2 = Ṁ, (33)

where Ṁ is the constant mass flux from the cluster. We
consider polytropic equation of state, where pressure
P , and sound speed cs are defined as

P = Kργ , c2s = γ
P

ρ
, ρ =

(
c2s
γK

) 1
γ−1

, (34)

P =

(
c2s
γ

) γ
γ−1

K− 1
γ−1 .

Introduce nondimensional variables as

ṽ =
v

v∗
c̃s =

cs
c∗
, r̃ =

r

r∗
, r∗ =

GM

c2∗
, v∗ = c∗,

ρ̃ =
ρ

ρ∗
, P̃ =

P

P∗
, ρ∗ =

(
c2∗
γK

) 1
γ−1

, (35)

P∗ =

(
c2∗
γ

) γ
γ−1

K− 1
γ−1 .

In non-dimensional variables the equation (32) is writ-
ten as

ṽ
dṽ

dr
+

2

γ − 1
c̃s
dc̃s
dr̃

+
1

r̃2
− λr̃ = 0, λ =

Λc2r2∗
3c2∗

. (36)

The continuity equation (33) in non-dimensional form
is written as

ρ̃ ṽ r̃2 = ṁ, c̃
2

γ−1
s ṽr̃2 = ṁ, ṁ =

Ṁ

Ṁ∗
, (37)

Ṁ∗ = 4πρ∗v∗r
2
∗.

It follows from (34),(35),(37), that

dρ̃

ρ̃
=

2

γ − 1

dc̃s
c̃s
,

dρ̃

ρ̃
+
dṽ

ṽ
+ 2

dr̃

r̃
= 0. (38)

Using (38) we may write the equation of motion (36)
in the form

dṽ

dr̃
=
ṽ

r̃

2c̃2s − 1
r̃ + λr̃2

ṽ2 − c̃2s
. (39)

The only physically relevant solutions are those which
pass smoothly the sonic point v = cs, being a singular
point of the Eq. (10), with

ṽ = c̃s, 2c̃2s −
1

r̃
+ λr̃2 = 0 (40)

where r̃ = r̃c, ṽ = ṽc, c̃s = c̃sc. Choosing c∗ = csc, we
obtain in the critical point
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ṽc = c̃sc = 1, 2− 1

r̃c
+ λr̃2c = 0. (41)

With this choice of the scaling paraneters, we have from
(37)

ṁ = r̃2c . (42)

The physical meaning of the parameter λ becomes clear
after rewriting it, using (31),(35), in the form

λ =
Λc2r2∗
3c2∗

= ρΛ
8π

3M
r3∗ = ρΛ

8π

3M

r3c
r̃3c

=
2ρΛ
ρM

1

r̃3c
, (43)

where ρM = 3M
4πr3c

is a density of the matter after

smearing the central mass uniformly inside the criti-
cal radius rc. The value of λ is proportional to the
ratio of the dark energy mass inside the critical radius
MΛ = 4π

3 r
3
cρΛ to the mass M of the central body.

The relation (41) determines the dependence r̃c(λ)
in the solution for the galactic wind and accretion, in
presence of DE. In presence of DE the critical radius of
the flow is situated closer to the gravitating center (in
non-dimensional units) with increasing λ. The Eq.(36)
for the polytropic flow has a Bernoulli integral as

ṽ2

2
+

c̃2s
γ − 1

− 1

r̃
− λr̃2

2
= h, (44)

c̃2s =

(
ṁ

ṽr̃2

)γ−1

=

(
r̃2c
ṽr̃2

)γ−1

.

The dimensional Bernoulli integral H = hc2sc. The
Bernoulli integral is determined through the parame-
ters of the critical point, with account of (41), as

h =
γ + 1

2(γ − 1)
− 1

r̃c
− λr̃2c

2
=

5− 3γ

2(γ − 1)
− 3

2

(
1

r̃c
− 2

)
.

(45)
The dependence h(λ) for different polytropic powers γ
is given in Fig.1. Note that in presence of DE the out-
flow is possible also for negative values of the Bernoulli
integral h, defined equally.
The stationary solution for the wind is determined

by two integrals: constant mass flux Ṁ , and energy
(Bernoulli) integral H. In absence of DE we obtain
the known relations

r̃c =
1

2
, h =

5− 3γ

2(γ − 1)
. (46)

At small λ we have from (41),(45)

r̃c = 0.5− λ

16
, h =

5− 3γ

2(γ − 1)
− 3

8
λ (47)

At large λ→ ∞ it follows from (41) r̃c → r̃c∞ = λ−1/3.
Making expansion in (41) around r̃c∞ in the form

λ

h(
en

er
gy

)

0 10 20-3

-2

-1

0

1

2

3

Figure 1: The function h(λ) for γ = 4
3 (full curve);

γ = 3
2 (dashed curve); γ = 5

3 (dash-dot-dot curve),
according to relations (41),(45)
.

1

r̃c
= λ1/3 + ε,

we obtain from (41), (45)

ε =
2

3
, r̃c =

1

λ1/3 + 2
3

, h =
5− 3γ

2(γ − 1)
− 3

2
λ1/3 + 2

(48)

=
γ + 1

2(γ − 1)
− 3

2
λ1/3 at λ→ ∞.

In the outflow from the physically relevant quasi-
stationary object the antigravity from DE should be
less than the gravitational force on the outer bound-
ary, which we define at r = r∗. Therefore the value of Λ
is restricted by the relation (see e.g. Bisnovatyi-Kogan
and Chernin, 2012)

2ρΛ =
Λc2

4πG
< ρ̄ =

4πM

3r3∗
(49)

In non-dimensional variables this restriction, with ac-
count of (35),(36) is written as

λ <
16π2

9
= 17.55 = λlim. (50)

It is reasonable to consider only the values of λ smaller
than λlim. It follows from (41), that r̃c is monotonically
decreasing with increasing λ. For λ = λlim = 17.55 we
obtain r̃c = r̃c,lim ≈ 0.29. The effective gravitational

potential Φ̃ is formed by the gravity of the central body,
and antigravity of DE

Φ̃ = −1

r̃
− λr̃2

2
. (51)
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To overcome the gravity of the central body, the value
of h should exceed the maximum value of the gravita-
tional potential, defined by the extremum of Φ̃

h ≥ Φ̃max(r̃max) = −3

2
λ1/3, r̃max = λ−1/3. (52)

It follows from(41), (52), that always r̃max > r̃c. So,
in presence of DE the outflow of the gas from the
cluster to the infinity is possible even at the negative
values of h. In absence of DE the non-negative value
of h, and the outflow are possible only at γ ≤ 5

3 .

7. Solutions of the galactic wind equation in
presence of DE

The equation (39) has a sound critical point of the
saddle type, and two physical (critical) solutions going
through this critical point. One of this solutions de-
scribes a wind outflow, and has a positive ṽ. Another
solution corresponds to an accretion (inflow), and has
a negative ṽ (Stanyukovich, 1955; Parker, 1963). To
obtain a physically relevant critical solution of (39),
with c̃2s from (44), we obtain expansion in the critical
point with ṽ2 = c̃2s = 1, in the form

ṽ = 1 + α(r̃ − r̃c), α1 = − 2

r̃c

γ − 1

γ + 1
,

+
1

r̃c

2

γ + 1

√
2 +

1

4r̃c
+
λr̃2c
2

− γ

(
2− 1

4r̃c
− λr̃2c

2

)
,

α2 = − 2

r̃c

γ − 1

γ + 1
(53)

− 1

r̃c

2

γ + 1

√
2 +

1

4r̃c
+
λr̃2c
2

− γ

(
2− 1

4r̃c
− λr̃2c

2

)
.

Here α1 corresponds to the wind solution, and α2 is
related to the case of accretion where ṽ define the ab-
solute value. At λ = 0 we have a well known expansion
with

α1 =
4

γ + 1

[√
5− 3γ

2
− (γ − 1)

]
,

α2 = − 4

γ + 1

[√
5− 3γ

2
+ (γ − 1)

]
.

It follows from the expansion (53), that physically rel-
evant solutions exist only with positive value under the
square root. It give the restriction for the value of γ as
a function of λ in the form

γ ≤ γmax =
2 + 1

4r̃c
+

λr̃2c
2

2− 1
4r̃c

− λr̃2c
2

.

At λ = 32, r̃c = 0.25 the limiting value γmax goes to
∞, so that at λ ≥ 32 the wind solutions exist formally
for all polytropic powers γ.

The numerical solution of (39) was obtained using
predictor-corrector Runge-Kutta method of 4-th order,
with a fixed relative precision, written in Fortran 77,
see Press et al. (1992) The integration started from
the critical point with ṽ = c̃s = 1, using the expansion
(53), both inside and outside the critical point, for two
types of the flow: the wind flow, corresponding to the
coefficient α1 in (53), and accretion flow, corresponding
to α2 in (53). The critical solutions of the equation
(39), with account of (44), are presented in Figs.2,3 for
different values of γ and λ. Both wind and accretion
solutions are presented.

The wind and accretion solutions are plotted in the
same figures 2,3, but the positive velocities correspond
only to the wind solutions. The outflow solutions have
increasing velocities in presence of DE with λ > 1, but
at λ = 0 the behaviour at large radius r̃ depends on
the adiabatic power γ. The velocity is increasing in
the wind solution at γ = 4

3 (Fig.2). At γ = 5
3 the

wind solution has a decreasing outflow velocity with a
constant Mach number, see Fig.3.

The accretion solutions in Figs.2,3 are represented
by the absolute values of the inflow velocity |ṽ|, and
the inflow velocity during accretion has a negative sign.
The inflow velocity inside the critical point at γ = 4

3 at

all λ converges to the same free fall velocity ṽ → −
√

2
r̃ ,

according to the Bernoulli integral (44), with r̃ ≪ 1,
in the supersonic flow with ṽ ≫ c̃s. At γ = 5

3 the
inflow solution at r̃ ≪ 1 is approaching to the constant
Mach number solution. The inflow solutions given in
Fig.3 correspond to Ma = 1. The equation (39) is
invariant to the transformation ṽ → −ṽ, therefore the
accretion solution was possible to obtain numerically
for the absolute values of the velocity.

The inflow solutions for the accretion starts at
large radiuses by a slow motion to the gravitating
center. The velocity increases in a subsonic regime,
and after crossing the critical point the supersonic
infall to the gravitating center starts. Note, that the
accretion solutions have a physical sense only for small
λ, when the region with a attractive gravitational
force is sufficiently large. In the regions with repulsing
force due to DE antigravity, the critical accretion
solutions of the equation (39) formally exist, but
they correspond to anomalous density distribution
increasing with radius, what cannot be expected in
reality.

8. Discussion

It is clear that the presence of DE tends to help
the outflow of the hot gas from the gravitating ob-
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Figure 2: The integral curves of the equations (39),
(44), for γ = 4/3 and λ = 0, rc=0.5 (dashed curves);
λ = 1.10, rc = 0.45 (dash-dot-dot curves); and λ =
5.13, rc = 0.37 (full curves). Wind solutions corre-
spond to curves with increasing velocity at large ra-
dius. The curves with decreasing velocities correspond
to the accretion solution with negative v, so that its
absolute value is presented.

ject, as well as to the escape of rapidly moving galaxies
(Chernin et al, 2013). Here we have obtained the so-
lution for outflow in presence of DE, which generalize
the well-known solution for the polytropic solar (stel-
lar) wind. Presently the DE density exceed the density
of the dark matter, and, even more, the density of the
barionic matter. The clusters which outer radius is ap-
proaching the zero gravity radius, may not only loose
galaxies, which join the process of Hubble expansion,
but also may loose the hot gas from the outer parts of
the cluster. Let us consider outer parts of the Coma
cluster at radius RC = 15 Mpc, with the mass inside
MC = 5 · 1015M⊙, from Chernin et al. (2013). For
the present value of ρΛ = 0.71 · 10−29 g/cm3, suppos-
ing that RC = r∗ is the critical radius of the wind, we
obtain from (2),(7), the nondimensional constant λ as

λ =
Λc2r2∗
3c2∗

=
8π

3

ρΛr
3
∗

M
≈ 0.59, (54)

c∗ =

√
GMC

RC
≈ 1200 km/c.

It corresponds to the temperature about T ≈ 6 ·107 K,
kT ≈ 5 keV. Observations of the hot gas distribution
in the Coma cluster (Watanabe et al., 1999) on ASCA
satellite have shown a presence of hot region with kT =
11−14 keV, and more extended cool region with kT =
5± 1 keV, what is in good accordance with our choice
of parameters.
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Figure 3: The integral curves of the equations (39),
(44), for γ = 5/3 and λ = 0, rc=0.5 (dashed curve);
λ = 1.10, rc = 0.45 (dash-dot-dot curves); and λ =
5.13, rc = 0.37 (full curves). For nonzero λ wind so-
lutions correspond to curves with increasing velocity
at large radius. The curves with decreasing velocities
correspond to the accretion solution with negative v,
so that its absolute values are presented. At λ = 0
both wind and accretion solutions are presented by the
same curve, which corresponds to the wind for positive
v, and to the accretion for negative v.

Wind solutions for λ=0; 0.58; 1.1 are presented in
Fig.4. The solution with λ=0.58 is the closest to the
description of the outflow from Coma cluster. The den-
sity of the gas in the vicinity of r = rc is very small, so
the flow may be considered as adiabatic (polytropic)
with the power γ=5/3. Without DE such gas flow is
inefficient, its velocity is decreasing ∼ 1/

√
r, see Eq.

(25). In presence of DE the wind velocity is increasing
2 times at the distance of ∼ 5rc ∼ 75 Mpc from Coma.

After quitting the cluster the gas is moving with
acceleration, acting as a snowplough for the inter-
galactic gas. The shell of matter, forming in such a
way, may reach a high velocity, exceeding considerably
the speed of galaxies in cluster. If the shell meets
another cluster, or another shell moving towards,
the collision of such flows may induce a particle
acceleration. Due to high speed, large sizes, and low
density such collisions may create cosmic rays of the
highest possible energy (EHECR). We may expect the
largest effect when two clusters move to each other.
The influence of DE is decreasing with with a red
shift, therefore the acceleration of EHECR in this
model should take place in the periphery, or between,
the closest rich galaxy clusters.
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Figure 4: The integral curves of the equations (39),
(44) for the wind solution, at γ = 5/3 and λ = 0,
rc=0.5 (dashed curve); λ = 1.10, rc = 0.45 (dash-dot-
dot curve); and λ = 0.58, rc = 0.47 (full curve).
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