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ABSTRACT. The spin-gravity coupling for highly
relativistic fermions according to the classical
Mathisson-Papapetrou and quantum Dirac equations
is considered. It is stressed that the behavior of
fermions in the highly relativistic regime in the
gravitational field is significantly different as compare
to usual situations. Possible corrections to the known
general relativistic Dirac equation for more adequate
description of fermions in strong gravitational fields
are discussed. Some numerical estimates for neutrinos
with nonzero mass that is interesting in astrophysics
are presented.
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The equation for a quantum particle with spin 1/2
in the gravitational field is known since 1929 when
the usual Dirac equation was generalized for curved
spacetime in general relativity [1]. The corresponding
(in a certain sense) equations for a classical (nonquan-
tum) spinning particle are eight years ”younger” and
are known as Mathisson-Papapetrou (MP) equations
[2].

The traditional form of MP equations is
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where uλ ≡ dxλ/ds is the particle’s 4-velocity, Sµν is
the tensor of spin, m and D/ds are, respectively, the
mass and the covariant derivative with respect to the
particle’s proper time s, and Rλπρσ is the Riemann cur-
vature tensor. The MP equations are considered with
some supplementary condition and most often the con-
dition Sµνuν = 0 or SµνPν = 0 are used, where Pν is
the particle’s 4-momentum (in general, Pν is not par-
allel to uν). In the linear spin approximation the cor-
responding solutions of the MP equations coincide at
the two these conditions. It is important that the MP
equations can be used for the investigation of spinning
particle motions with any velocity relative to the source
of the gravitational field (for example, Schwarzschild’s

or Kerr’s black hole), up to the speed of light, similarly
as the geodesic equations are used for a fast moving
spinless particle.

The MP equations can be written in terms of the
tetrad quantities comoving with the spinning parti-
cle [3]. It follows from this representation that in
the concrete case of particle motion in Schwarzschild’s
background, when the particle’s spin is orthogonal to
the plane determined by the direction of particle mo-
tion and the radial direction, the absolute value of the
particle 3-acceleration relative to geodesic free fall as
measured by the comoving observer is proportional to
γ2, where γ is the relativistic Lorentz factor as calcu-
lated by the tangential particle velocity relative to the
Schwarzschild mass. It means that there is significant
difference in the reaction of a spinning particle on the
gravitational field when its velocity is much less than
the velocity of light (with γ of order 1) and is very close
to this velocity (γ ≫ 1). From the point of view of the
comoving observer, the deviation of a spinning particle
from the geodesic free fall is caused by the gravitomag-
netic components of the moving Schwarzschild source.

Moreover, the strong action of gravity on a highly
relativistic spinning particle is not only in the ex-
pression for the local accelerate of this particle rel-
ative to a spinless particle but in the trajectories of
the spinning particle as compare to the corresponding
geodesic trajectories as well [4]. Indeed, if the spinning
particle posses the velocity relative to Schwarzschild’s
mass which corresponds to the γ-factor of order 1/

√
ε0,

where ε0 ≡ |S0|/(mM) (here |S0| and m are, respec-
tively, the values of the particle’s spin and mass; M is
the Schwarzschild mass), its orbits that begin in the
space region near 1.5rg can significantly differ from
the corresponding geodesic orbits. This result follows
from the MP equations in the linear spin approxima-
tion, i. e. is common at the conditions Sµνuν = 0
and SµνPν = 0. In addition, according to the exact
MP equations at condition Sµνuν = 0 the essentially
nongeodesic highly relativistic orbits of the spinning
particle are allowed for the radial coordinate r which
is much greater than 1.5rg and the necessary value of
the γ-factor is proportional to

√
r. Some of these or-

bits show the significant attractive action of the spin-
gravity coupling on a particle and others are caused
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by the significant repulsive action, dependently on the
spin orientation.

By the numerical estimates for an electron in the
gravitational field of a black hole with three of the
Sun’s mass the value |ε0| is equal to 4 × 10−17. Then
the necessary value of the γ-factor for the realization
of some highly relativistic circular orbits by the elec-
tron near this black hole is of order 108. This γ-factor
corresponds to the energy of the electron free motion
of order 1014 eV. Analogously, for a proton in the field
of such a black hole the corresponding energy is of or-
der 1018 eV. For the massive black hole those values
are greater: for example, if M is equal to 106 of the
Sun’s mass the corresponding value of the energy for
an electron is of order 1017 eV and for a proton it is
1021 eV. Note that for a neutrino near the black hole
with three of the Sun’s mass the necessary values of its
γ-factor for motions on the highly relativistic circular
orbits correspond to the neutrino’s energy of the free
motion of order 105 eV. If the black hole’s mass is of
order 106 of the Sun’s mass, the corresponding value
is of order 108 eV. So, some particles in cosmic rays
posses a sufficiently high γ-factor for motions on the
significantly nongeodesic orbits near black holes. Con-
cerning neutrinos, perhaps, the corresponding effects
of the highly relativistic spin-gravity coupling can be
registered by the IceCube neutrino detector.

By the way, concerning the possible behavior of a
highly relativistic neutrino in Schwarzschild’s back-
ground we point out paper [5] where some solutions
of the MP equations at the condition SµνPν = 0 are
studied. The conclusion is formulated that gravitation
can accelerate neutrinos to the superluminal motion
due to their spin. In this context we stress that 1)
this effect is not allowed by the MP equations at the
condition Sµνuν = 0 and 2) it is shown in [6] that the
condition SµνPν = 0 is not adequate for the descrip-
tion of spinning particle motions with the velocity rel-
ative Schwarzschild’s mass which is greater than some
critical value that is close to the velocity of light.

Naturally, the MP equations can be used for de-
scription of fermions in the gravitational field only in
situations when their quantum properties are not im-
portant. Here we stress that the general relativistic
Dirac equations is not appropriate for fermions in some
highly relativistic regime as well.

It is shown in many papers that in the linear spin ap-
proximation the MP equations follow from the general
relativistic Dirac equation as some classical approxima-
tion (see, e. g. [7]). Here we draw attention to the fact
that the exact MP equations (i. e., their nonlinear in
spin terms) cannot be obtained from this Dirac equa-
tion in principle. Why? To answer this question we
recall that the main step in obtaining the general rela-
tivistic Dirac equation in the curved spacetime consists
in introduction the notion of the parallel transport for
spinors as a generalization of this notion for tensors.

Whereas according to the MP equations the spin of a
test particle is transported by Fermi:

Dsµ

ds
= uµ

Duν
ds

sν , (3)

where D/ds is the covariant derivative. It follows from
(3) that only in the linear spin approximation the
Fermi transport coincides with the parallel transport.
Therefore, to satisfy the principle of correspondence
between the Dirac equation and the exact MP equa-
tions, at first sight, it is necessary simple to introduce
and use the Fermi transport for spinors in some
corrected Dirac equation. However, it is impossible
without the Lorentz invariance violation. In this
context we note that many papers are devoted to the
violation of Lorentz invariance from different points
of view, for example, in the context of the Standard-
Model Extension by V. A. Kostelecky and co-authors
[8, 9] and, probably, the key words Lorentz-violating
spinor first appeared only last year [9]. One can
hope that just in the framework of this approach the
necessary corrected Dirac equation will be obtained.
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