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ABSTRACT. As is shown in the present compu-
tations performed using three-dimensional numerical
astrophysical methods, in microquasars in the course
of precession of the accretion disc blown by the donor’s
wind the on- and off-states start being generated in
the disc. In our case, the transition between these
states takes 30-40 minutes of the orbital time. In
the off-state the temperature changes discretely, i.e.
such a change appears as separate sharp peaks, which
almost merge with each other over time.
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1. Introduction

The present study carried out using numerical meth-
ods for astrophysics aims to show that in microquasars
in the course of precession of the accretion disc blown
by the donor star’s wind the on-states (high/soft) and
off-states (low/hard) start being generated in the disc.

The afore-mentioned phenomenon was simulated by
the example of a microquasar in the semi-detached
close binary (CB) Cyg -1.

The main purpose of these computations is to
simulate the accretion disc and its driven precession
provided that the donor slightly overfills its Roche lobe
(the donor’s photospheric layers are in the vicinity
of the L1 point), and the radiation wind flows from
the remaining part of the donor’s surface (except the
vicinity of the L1 point) at that.

2. The numerical algorithm

The numerical approach for the accretion disc for-
mation in the microquasar Cyg X-1 is identical to that
one used in massive X-ray CB and microquasar candi-
dates Cen -3 and LMC -3 [1,2]. When computing the
gas flow, the astrophysical version of the large-particle
method by Belotserkovskii & Davydov [3] was applied

for integration of the non-stationary Euler equations.

To show how the computations were performed, let
us describe the numerical scheme of the astrophysical
version of the Belotserkovskii & Davydov large-particle
method. To carry out computations by the method
of large particles, the entire computational domain is
divided into three-dimensional rectangular grid cells,
and all integer values of physical quantity indices cor-
respond to the grid cells geometric centres. All physical
quantities are constant within a given cell. The frac-
tional indices fall at the grid cell’s boundaries. The
formulae below are written in such a way that the di-
rection of an increase in each index along all three axes
coincides with the positive directions of those axes. In
the presented formulae the variables Un

i,j,k, V
n
i,j,k and

UZn
i,j,k are initial velocities at a given nth time-step

along the x, y and z axes in the cell with indices i, j
and k, respectively; and the variables Un

1,i,j,k, V
n
1,i,j,k

and UZn
1,i,j,k are final velocities in the first stage of

computations.

It should be noted that in the first stage of com-
putations with a given time-step the pressure and ex-
ternal field effects were the only factored in. The ef-
fects of the transfer of physical quantities across the cell
boundaries were accounted for in the second stage of
computations. In equations 2, 7 and 9, among all non-
inertial forces, only those proportional to ω0 and ω2

0

are taken into account; while the effects proportional
to ωp · AA and (ωp · AA)2, i.e. effects associated with
the donor’s precession, are not factored in due to their
apparent smallness as ωp = ω0/2.56 and AA = 0.15.
It is also should be mentioned that the pressure effects
written as the central differences in the equations be-
low make the numerical scheme unstable; however, the
effects of the physical quantity transfer, which account
for the gas flow direction, are used in the second stage
of computations, and that makes the numerical scheme
of the large-particle method absolutely stable, steady
and strictly conservative.

Un
1,i,j,k = Un

i,j,k +A · dt , where (1)
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A =
Pn
i+1/2,j,k − Pn

i−1/2,j,k

ρni,j,k · dxi
+

+
GMdonor(x− xdonor)

R3
donor

+
GMx(x− xaccr)

R3
accr

−

−2 · V n
i,j,k · ω0 · cosβ + ω2

0(x− xc.m) cosβ (2)

β = arctan zaccr , (3)

where zaccr = AA sin(ωpt), ωp = 2π
Pprec

, ω0 = 2π
P0

,

AA = 0.15

Rdonor =
√

(x− xdonor)2 + (y − ydonor)2 + (z − zdonor)2

(4)

Raccr =
√
(x− xaccr)2 + (y − yaccr)2 + (z − zaccr)2

(5)

V n
1,i,j,k = V n

i,j,k +B · dt , where (6)

B =
Pn
i,j+1/2,k − Pn

i,j−1/2,k

ρni,j,k · dyj
+

+
GMdonor(y − ydonor)

R3
donor

+
GMaccr(y − yaccr)

R3
accr

+

+2Un
i,j,k · ω0 · cosβ +

+2UZn
i,j,k · ω0 · sinβ + ω2

0(y − yc.m.) (7)

UZn
1,i,j,k = UZn

i,j,k + C · dt , where (8)

C =
Pn
i,j,k+1/2 − Pn

i,j,k−1/2

ρni,j,k · dzk
+

+
GMdonor · (z − zdonor)

R3
donor

+
GMaccr(z − zaccr)

R3
accr

+

+2ω0 · V n
i,j,k · sinβ + ω2

0(z − zc.m.) sinβ (9)

En
1,i,j,k = En

i,j,k +D · dt , where (10)

D =
Pn
i,j,k

ρni,j,k
·
Un
i+1/2,j,k − Un

i−1/2,j,k

dxi
+

+
Pn
i,j,k

ρni,j,k
·
V n
i,j+1/2,k − V n

i,j−1/2,k

dyj
+

+
Pn
i,j,k

ρni,j,k
·
UZn

i,j,k+1/2 − UZn
i,j,k−1/2

dzk
(11)

Pn
i,j,k = nn

i,j,k ·KTn
i,j,k (12)

In the presented formulae G - the constant of grav-
itation; Mdonor and Maccr - the donor and accre-
tor masses, respectively; xdonor, ydonor, zdonor - the
donor’s geometric centre coordinates; xaccr, yaccr, zaccr
- the accretor’s geometric centre coordinates; P0 - the
orbital period; Pprec - the precession period of the tar-
get CB; xc.m., yc.m., zc.m. - the coordinates of the CB
centre of mass; En

i,j,k - specific internal energy at the
beginning of a given time-step in the grid cell with
indices i, j, k, En

1,i,j,k - specific internal energy at the

end of the first stage of the nth time-step in the grid
cell with indices i, j, k; ρni,j,k - the density in the first

stage of the nth time-step in the grid cell with indices
i, j, k; dxi, dyj , dzk a given grid cell’s dimensions in the
x, y, z directions; Pn

i,j,k - the pressure in the grid cell

with indices i, j, k at the nth time-step; K - the Boltz-
mann constant; Tn

i,j,k - the temperature in the grid cell

with indices i, j, k at the nth time-step. The physical
quantities with fractional indices were computed with
numerical differences of up to and including the third
order that resulted in rather accurate calculation of the
physical quantities on the non-uniform computational
grid.
The second stage of computations of the numerical

algorithm for the large-particle method is described
starting with formula 13. In this stage the flows of
physical quantities across the grid cell boundaries are
computed, and the final velocities and temperatures
at a given time-step are determined. Formula 13 de-
scribes the calculation of change in density at a given
time-step in a given grid cell. Formulae 14-15 describe
calculations of the mass flow across i − 1/2 boundary
of a given grid cell. As is seen in these formulae, the
velocity directions are taken into account when com-
puting the mass flow. Such arrangement of the sec-
ond stage computations for the large-particle method
makes the scheme integrally stable, steady and strictly
conservative. The other mass flows across other grid
cells boundaries, used in formula 13, are computed sim-
ilarly to formulae 14 and 15. At that the positive direc-
tion of the velocity in formulae 14 and 15 corresponds
to the increment in the grid cell number.

ρn+1
i,j,k = ρni,j,k +

△Mn
i−1/2,j,k −△Mn

i+1/2,j,k

dxidyjdzk
+

+
△Mn

i,j−1/2,k −△Mn
i,j+1/2,k

dxidyjdzk
+

+
△Mn

i,j,k−1/2 −△Mn
i,j,k+1/2

dxidyjdzk
(13)

△Mn
i−1/2,j,k = dyj · dzk · Un

1,i−1/2,j,k · ρni−1,j,k · dt,
if Un

1,i−1/2,j,k > 0

(14)
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△Mn
i−1/2,j,k = dyj · dzk · Un

1,i−1/2,j,k · ρni,j,k · dt,
if Un

1,i−1/2,j,k < 0

(15)

When computing formula 18, three velocity compo-
nents (calculated in the first stage) and total energy,
which are determined in curly brackets in formula 16,
successively substitute for the variable Zn+1

i,j,k .

Zn+1
i,j,k =

{
Un
1,i,j,k;V

n
1,i,j,k;UZn

1,i,j,k;E
n
total,i,j,k

}
(16)

En
total,i,j,k =

(Un
1,i,j,k)

2 + (V n
1,i,j,k)

2

2
+

+
(UZn

1,i,j,k)
2

2
+ En

1,i,j,k (17)

Zn+1
i,j,k =

Zn
i,j,kρ

n
i,j,k

ρn+1
i,j,k

+
△Mn

i−1/2,j,k · Zn
i−1,j,k

ρn+1
i,j,k · dxi · dyj · dzk

+

+
−△Mn

i+1/2,j,k · Zn
i,j,k +△Mn

i,j−1/2,k · Zn
i,j−1,k

ρn+1
i,j,k · dxi · dyj · dzk

+

+
−△Mn

i,j+1/2,k · Zn
i,j,k +△Mn

i,j,k−1/2 · Z
n
i,j,k−1

ρn+1
i,j,k · dxi · dyj · dzk

−

−
△Mn

i,j,k+1/2 · Z
n
i,j,k

ρn+1
i,j,k · dxi · dyj · dzk

(18)

The boundary conditions and radiation wind from
the donor in these computations are similar to those
ones in our earlier studies [1, 2].
We assumed that the binary parameters are as fol-

lows: the Cyg X-1 orbital period is 5.6 days; the ac-
cretor’s mass is 10 M⊙; the donor’s mass is 20 M⊙[4];
the accretion velocity in the disc is about 3.0 · 10−8

M⊙/year [5].
The condition of the accretion disc formation is that

the wind acceleration in the radial direction in the
vicinity of the L1 point and along the line of centres in
the accretor’s Roche lobe should decrease to zero. The
L1 point vicinity starts at the L1 point and extends to
the accretor’s Roche lobe; in these computations the
chosen vicinity extension in the radial direction is 0.22
(here and elsewhere all distances are given in units of
orbital separation).
In this study, the driven precession computations

were performed given that the precession donor is em-
bedded, i.e. fixed in this computational grid while it is
accretor that changes its position in space (i.e. moves
across the computational grid). However, mutual posi-
tioning of the accretor and donor changes in a similar
way as if it is the donor is precessing (the effect of

the uniform motion relativity in classical physics). At
that we assume that the donor is precessing uniformly
without surges and accelerations, so the accretor’s mo-
tion will be uniform as well. The precession period is
assumed equal to 20 orbital periods.

It should be noted that we do not assume any ad-
ditional conditions for the on- and off-states creation,
they should be generated in the disc under the only
effect of precession with no additional conditions.

3. The computational results of the on- and
off-states generation in the disc

The study task is posed in such a way that the ini-
tiation of the winds from the donor and accretion disc
is calculated first, then the accretion disc’s driven pre-
cession is started, and the computations proceed as far
as the computer capability permits to trace disc’s evo-
lution as long as possible.

The donor’s wind is initiated during the first quarter-
third of the first orbital period, and the disc is formed
in the course of the first orbital period.

The orbital plane section and that one of the plane,
which is perpendicular to it and lies on the line of cen-
tres, in the computational domain at the instant of
time corresponding to the precession period 1.31 are
presented in Fig. 1 and 2. These figures show the
donor, wind from donor and accretion disc, which is
tightly compressed by the wind from the donor at the
given precession phase (the beginning of the low/hard
phase).

The key properties of the disc resulted from these
computations, such as the temperature in the disc’s
centre and accretion rate around the disc’s centre as
functions of time, are shown in Fig. 3 and 4. As is
seen in these figures, the accretion rate and tempera-
ture over each precession period change markedly (by
more than two orders of magnitude); when there is
a two-order increase in the temperature in the disc’s
centre, the accretion rate drops accordingly by two or
just over two orders of magnitude at the same instants.
All those variables fluctuate dramatically at that while
the transition between high and low temperature con-
ditions, and low and high accretion rates, respectively,
takes 30-40 minutes of the orbital time.

Thus we can state the fact that in our computations
in the course of precession of the numerical disc model
high and low temperature conditions, and low and high
accretion rates, respectively, are generated; and we in-
terpret these conditions as the off- and on-states of the
accretion discs in microquasars, respectively. The fact
that the numerical disc model alters significantly over
the precession period is given in Fig. 5 where it is
shown that the disc’s mass changes with the preces-
sion period (the disc’s mass is given on the logarithmic
scale inM⊙). As it is seen in this figure, the disc’s mass
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Figure 1: The number density distribution over the
computational domain at the precession phase 1.31 in
the orbital plane.
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Figure 2: The number density distribution over the
computational domain at the precession phase 1.31 in
the Z-X plane.
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Figure 3: The temperature in the disc’s centre over
time.
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Figure 4: The mass accretion rate in the disc’s centre
over time.
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Figure 5: The disc’s mass over time on the logarithmic
scale in M⊙.

changes by almost two orders of magnitude; and at that
when the accretion rate is maximum at the high/soft
phase, the disc’s mass also reaches maximum.
As can be concluded from the aforesaid, the preces-

sion mechanism of the on- and off-states generation
works as follows: while the accretion disc is precessing,
the wind from the donor flows onto the disc at
different instants at various angles, causing the disc’s
tight compression (that occurs near the precession
phase 0.00, which is approximately the middle of
the high/soft phase); in that case the accretion rate
increases, and the on-state occurs in the disc as the
radiative cooling is very effective with high concen-
trations in the disc’s centre, and hence the gas cools
down to low temperatures. At the counter precession
phase near the phase 0.50 (which is approximately
the middle of the low/hard phase) the disc does not
practically experience the wind’s pressure that results
in the wind-accretion rate decrease and the off- state
occurrence as the radiative cooling becomes ineffective
at that instant, and the temperature in the disc’s
centre increases significantly.

4. Conclusions

This study conducted using methods for three-
dimensional numerical hydrodynamics shows that
in microquasars in the course of precession of the
accretion disc blown by the donor’s wind the on-
and off-states are generated in the disc, at that the
transition between these states is catastrophically fast
and takes 30-40 minutes of the orbital time. The
computations also showed that the temperature in
the disc’s centre changes discretely in the off-state
and such a change appears as separate sharp peaks,
which are at very small distances from each other
(5-10 minutes of the orbital time). As follows from
the observations, such discrete behaviour of the
temperature in the low/hard phase corresponds to the
similar discrete behaviour of the hard X-rays in the
low/hard phase.
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