ON THE HEURISTIC RULE FOR PLANETARY DISTANCE DISTRIBUTION

N. D. Svyazhyn
I.I.Mechnikov Odessa National University
Odessa 65082, Ukraine,swjashin@onu.edu.ua

ABSTRACT. This paper presents a new heuristic rule for the planetary distance distribution in the solar system similar to the Titius-Bode rule of planetary orbit spacing. Application of this universal rule simultaneously for planets and planetary moons has been considered. Natural satellites orbiting around a central body are divided into groups of six satellites in each.

1. Introduction

There is a vast literature on the search of regularities of planetary and moon orbit spacing according to the TitiusBode - type relation [1-8]. The Titius-Bode Law of Planetary Distances: Its History and Theory by Michael M. Nieto from the Niels Bohr Institute at the University of Copenhagen was issued in 1972. Apparently, the TitiusBode relation expresses, to some extent, Newtonian mechanics in empirical form: each planet in the solar system is about 1.7 times further from the Sun than the next innermost planet. It was also shown that such regularities are realised in exoplanetary systems [2, 7]. The geometric series for distances follows from Newton's law; however, to perform sufficient simulation and deepen understanding of this phenomenon, it is necessary to rely on the methods of celestial mechanics and apply modern computer technologies. This study presents a new heuristic rule for the spacing of systems of different bodies in the solar system.

2. Rule definition

Natural satellites orbiting around a central body are divided into groups of six moons in each:

$$
\begin{equation*}
h_{m n}, \quad n=\overline{1.6} \tag{1}
\end{equation*}
$$

where m - the group number; n - the ordinal number of a moon within a group starting with the central body; $h_{m n}-$ the average distance between the central body and moon which equals to the radius of a sphere which has the same area as the planar figure restricted by the moon's orbit. If a, b - the ellipse semi - axes, then the sought radius equals to $\sqrt{a b}$. The distances in the group are approximated with the following formulae (see Table 1). (Here α_{m} - the group non - dimensional parameter; H_{m} the average orbital radius of the $6^{\text {th }}$ moon in the group, which is called the upper boundary of the group and $h_{m I}-$ the lower boundary of a group. The distances $h_{m n}$ within groups of moons are related as follows:

$$
\begin{equation*}
h_{m+k n}=\beta^{k} h_{m n}, \quad k=0,1,2,3 \ldots \tag{2}
\end{equation*}
$$

where $m+k$ - the number of a group).
Having the relative values entered, the previous table can be presented as follows (see Table 2). As is evident, here

$$
\begin{equation*}
a_{m n}=\frac{h_{m n}}{h_{m 6}} \text { and } \alpha_{m}=\frac{h_{m 6}}{h_{m 3}} \tag{3}
\end{equation*}
$$

Table 1

Moon number	1	2	3	4	5	6
Distance notation	$h_{m 1}$	$h_{m 2}$	$h_{m 3}$	$h_{m 4}$	$h_{m 5}$	$h_{m 6}$
Distance formula	$\frac{H_{m}}{\alpha_{m}^{2}-1}$	$\frac{H_{m}}{\alpha_{m}+1}$	$\frac{H_{m}}{\alpha_{m}}$	$\frac{H_{m}}{\alpha_{m}-1}$	$\frac{2 \alpha_{m}^{H_{m}}}{\alpha_{m}^{2}-1}$	H_{m}

Table 2

Moon	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
Distance formula	$\frac{1}{\alpha^{2}-1}$	$\frac{1}{\alpha+1}$	$\frac{1}{\alpha}$	$\frac{1}{\alpha-1}$	$\frac{2 \alpha}{\alpha^{2}-1}$	1

Besides, it is supposed that the sequencing axiom is realised for planetary distances with any allowed values of the parameter α :

$$
\begin{equation*}
0<a_{m n}=\frac{h_{n}}{h_{6}}<a_{m n+1} \leq 1, \quad n=\overline{1,5} \tag{4}
\end{equation*}
$$

from which the left restriction for the parameter α is obtained:

$$
\begin{equation*}
1+\sqrt{2}<\alpha_{m} \tag{5}
\end{equation*}
$$

From the sequencing axiom, which states that the upper boundary of the group is less than the lower boundary of the next group,

$$
\begin{equation*}
h_{m-16}<h_{m n}, \quad n=1,2,3, \ldots 6 \tag{6}
\end{equation*}
$$

the right restriction is obtained:

$$
\begin{equation*}
\alpha<\sqrt{\beta+1} \tag{7}
\end{equation*}
$$

Let us suppose that there are two Phaetons rather than one hidden in the asteroid belt at the distances of 2.26 and 2.94 AU from the Sun, and that asteroid Chiron ($a=13.65$ $\mathrm{AU}, e=0.382$) is a minor planet (or its remainder). According to the above - formulated rule we receive the following (see Table 3).

Asteroid 538P - L with the average orbital radius of 2.261763 AU , asteroid 1992DT2 with the average radius of 2.9403035 AU and asteroid 1999W140 with the average radius 2.9399417 AU (or the members of the Flora and Eos families) were selected as the fragments of the $5^{\text {th }}$ and $6^{\text {th }}$ planets within the first group.

Thus, the values $\alpha_{m} \approx 2.94, m=1,2,3 ; \quad \beta \approx 13$ rather accurately approximate the relative distances $\frac{h_{m k}}{h_{m 6}}, k=\overline{1.6}, m=\overline{1.3}$, obtained on the basis of actual data.

The majority of the Kuiper belt asteroids are in the region extending between the orbits of the last planet of the second group and the second planet of the third group. The $3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$ and $6^{\text {th }}$ planets of the third group among trans - Neptunian objects do not belong to families.

3. Description of moon systems

To make it more illustrative, it is more convenient to examine the Neptunian moon system first (see Table 4).

As is seen from Table 4, the first four moons make up a family of the first object within the first group. Positions for the $4^{\text {th }}$ and $5^{\text {th }}$ objects within the first group are empty. The second group is completely empty.

The existence of positions in the second group is determined by the values β, which should meet some additional requirements (see Formula 8). Besides, a definite rule, such as density axiom, can be set: in accordance with this axiom parameters $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ should take on the least values given that conditions (2) and (6) are fulfilled.

In other words, when distributing moons within the first and third groups, the existence of the second group which fulfils condition (6) follows from condition (2).

Table 3

		PLANET	$\begin{gathered} h_{3}=\beta h_{2} \\ \beta=13.1 \end{gathered}$	AVERAGE RADIUS	RELATION WITHIN A GROUP	THEORETICAL RELATION	β
1	1	Mercury		. 38294034	. 130	. 130	
	2	Venus		. 722332359	. 246	. 254	
	3	Earth		. 99993022	. 340	. 340	
	4	Mars		1.5203275	. 5171	. 516	
	5	The Flora family		(2.2616567)	. 77	. 77	
	6	The Eos family		(2.94)	1	1.	
2	1	Jupiter		5.208709	. 134	. 13	13.601882
	2	Saturn		9.5300711	. 245	. 25	13.175292
	3	Chiron		13.208832	. 34	. 34	13.209754
	4	Uranus		19.18058	. 494	. 52	12.616084
	5	Neptune		30.068409	. 77	. 77	13.258811
	6	Pluto		38.855936	1.	1.	13.352555
3	1	(229762) 2007 UK	68.234088	68.69	. 139	. 13	13.2
	2	$\begin{aligned} & \hline(181902) 1999 \mathrm{RD}, \\ & (82158) 2001 \mathrm{FP} \\ & \hline \end{aligned}$	124.84393	$\begin{gathered} \hline 105.564 \\ 157.7 \\ \hline \end{gathered}$	$\begin{gathered} .21 \\ .319 \\ \hline \end{gathered}$. 25	11.08
	3	(148209) 2009 CR	173.0357	169.644	. 34	. 34	12.85
	4	2004 VN	251.2656	243.365	. 493	. 52	12.69
	5	(90377) Sedna	393.89616	374.634	. 76	. 77	12.46
	6	2006 SQ	509.01276	493.24	1	1.	12.69

Table 4: The Neptunian moon system (Neptune's radius 24,764 km).

No	$\begin{gathered} \text { Group } \\ \text { number } \end{gathered}$	Object number within a group	Number family	Moon names	R, km	R/R	R/R theoretical	β	$\mathbf{M}, \mathbf{k g}$
1	I	1	1	Naiad	48227	0.1359272	0.11		$1.9 \cdot 10^{17}$
2			2	Thalassa	50075	0.1411358			$3.5 \cdot 10^{17}$
3			3	Despina	52526	0.1480439			$2.1 \cdot 10^{18}$
4			4	Galatea	61953	0.1746380			$2.1 \cdot 10^{18}$
5		2		Larissa	73548	0.2072942	0.24		$4.9 \cdot 10^{18}$
6		3		S/2004 N 1	105200	0.296505	0.32		
7				Proteus	117647	0.3315858			$5.0 \cdot 10^{19}$
		4		163.5			0.46		
		5		248.6			0.70		
8		6		Triton	354800	1.0000000	1.		$2.1 \cdot 10^{22}$
							$\alpha=3.17$		
	II	1		421-513.2					
		2		783-1060					
		3		1060-1252					
		4		1740-2108					
		5		2645-3500					
		6		3775-4240					
								$\beta=10.64$	
9	III	1		Nereid	4479360.7	0.0992068	0.125	9.6401649	$3.1 \cdot 10^{19}$
		2		11277.8			0.25		
10		3		Halimede	14249954	0.315886	0.3(3)	11.007844	$9.0 \cdot 10^{16}$
11		4	1	Sao	21924105	0.4850029	0.5		$6.7 \cdot 10^{16}$
12			2	Laomedeia	22433384	0.4972924			$5.8 \cdot 10^{16}$
13		5		Psamathe	37243465	0.8255951	0.75		$1.5 \cdot 10^{16}$
14		6		Neso	45111053	1.0000000	1.	11.275853	$1.7 \cdot 10^{17}$
							$\alpha=3.0$		

Now let us examine the Saturnian moon system:
Drawing an analogy between macrocosm and microcosm, in accordance with the planetary model of the atom in which an electron strives to occupy the lowest orbit from the allowed ones, it can be assumed that a similar phenomenon can be observed in macrocosm as it was in the case of the $\boldsymbol{\beta}$ parameter selection during assignment of the second group of the Neptunian moons. It means that the allowed orbits of a central body's moons are determined on the same ground.

As can be seen, the moons of the Saturnian system are divided into three groups.

The moons from the $0^{\text {th }}$ to the $13^{\text {th }}$ form a sub - group located between the orbits of the first and second moons within the first group. This group can be called a family or a sub - group of the first moon within the first group.

One of the criteria by which the moons were assigned to this group, is the moons' sizes given in the last column of the table as it is not feasible to perform any other assignment.

It should be noted that the $9^{\text {th }}$ moon of the first family within the third group of the Saturnian system satisfies the following condition: $h_{3,1,9}=\beta h_{2,1}=16938$ (see Table 5).

Further let us consider the moon system of Jupiter. Using the same principles as before, we obtain data presented in Table 6. The distance for the first moon of the first group of the Jupiter system is determined by relation $h_{1}=\alpha_{1} h_{6}$, although it is less than the central body's radius (see Table 6).

The Uranian moon system can be described with four groups (see Table 7).

In different sources, the solar and planetary parameters vary significantly. Table 8 presents some variations of those parameters, as well as the obtained values of parameters α and β.

Table 5: The Saturnian moon system (Saturn's radius $60,268 \mathrm{~km}$).

$(\alpha \approx 3.2, \beta \approx 11.57, \alpha \beta \approx 37.024)$

Table 6: The moon system of Jupiter (Jupiter's radius 71,492 km).

No	Diameter	Group number	Object number$\begin{array}{c}\text { within a } \\ \text { group }\end{array}$	$\left\|\begin{array}{c} \text { Number } \\ \text { within a } \\ \text { family } \end{array}\right\|$	Moon name	Average radius, thsd. km	R/R	R/R theoretical	β	
		I	1		20.49			0.113		
			2		43.89			0.242		
			3		57.67			0.318		
			4		84.70			0.467		
1	~ 40		5	1	Metis	127.69	0.7040459	0.709		
2	~ 16			2	Adrastea	128.69	0.7955960			
3	~ 146		6		Amalthea	181.366	1.0	1.0		
								$\alpha=3.14$		
4	-98	II	1		Thebe	221.872	0.1178490	0.15	10.83	
5	~ 3630		2		$\underline{\text { I }}$	421.7	0.2239892	0.26	9.6	
6	-3121,6		3		Europa	671.02	0.3564174	0.36	11.64	
7	$\sim 5262,4$		4		Ganymede	1070.412	0.5685575	0.56	12.64	
			5		1543.8			0.82	12.09	
8	$\sim 4820,6$		6		Callisto	1882.68	1.0	1.0	10.38	
								$\alpha=2.8$	$\beta=11.2$	
		III	1		2196-2622	阝 ¢2485		0.1153123		
			2		4634-5531	阝 $\mathbf{u} 4723$		0.243309		
9	8		3		Themisto	7309.11	0.3214949	0.3214949	10.89	
10	10		4	1	Leda	11108.66		0.4739336		
11	170			2	Himalia	11385.86	0.5008128		10.63	
12	86			3	Elara	11664.67				
13	36			4	Lysithea	11688.92				
14				5	S/2000 J 11	12435.16				
15	1		5	1	$\underline{\text { S/2003 J } 12}$	16787.83		0.7172426	10.87	
16	3			2	Carpo	16814.85	0.7396097		10.89	
17	2		6	1	Euporie	19044.30			10.11	
22	2			6	Thelxinoe	20074.99			10.66	
32	28			16	Ananke	20787.92			/каллисто=11.04	
33	4			17	Hermippe	20898.75			11.10	
34	4			18	Thyone	21055.91	β к=21086		$\beta=10.86$	$K_{26} \cdot \beta$
38				22	S/2003 J 10	22027.12			/каллисто=11.69	
51	60			35	Pasiphae	22734.76	$1.00000000-$	1.0	/каллисто=12.08	
54	46			38	Carme	22873.13			/каллисто=12.15	
64	38			48	Sinope	23589.52			/каллисто=12.53	
65	4			49	Isonoe	23610.92			/каллисто=12.54	
								$\alpha=3.11$		
66	5	IV	1	1	Megaclite	24080.92			10.418	
67				2	$\underline{\mathrm{S} / 2003 \mathrm{~J} 2}$	30018.99			11.6318	
			2		52900					
			3		81900					
			4		12750					
			5		17300					
			6		254600					
					$\beta=11.02$			$\alpha=3.11$		

$(\alpha \approx 3.04, \beta \approx 11.2, \alpha \beta \approx 34.05)$

Table 7: The Uranian moon system (the radius of Uranus is $24,800 \mathrm{~km}$).

No	$\underset{\text { thsd. } \mathrm{km}}{\mathrm{R}}$	Group number	Object number within a group	Number within a family	Moon name	r/r	β	β	Theoretical \mathbf{r} / \mathbf{r}
	13.83	I	1						0.18445
	21.22		2						0.28295
	29.6		3						0.3946
1	49.751000		4	1	Cordelia	0.6510206			0.652
2	53.762629			2	Ophelia	0.7035151			
7	66.097000			7	Portia	0.8649175			
8	69.927000		5		Rosalind	0.9150353			0.935
9	74.800000		6	1	Cupid	0.9788013			1.
10	75.255000			2	Belinda	0.9847553			
11	76.420000			3	Perdita	1. $\alpha=2.5342$			
							$\beta=6.25$		
12	86.004000	II	1		Puck	0.1473864	6.23		0.126
13	97.734000				Mab	0.1674378			
14	129.389950		2		Miranda	0.2217652	6.09		0.251
15	191.019930		3		Ariel	0.327335	6.453		0.334
16	266.298930		4		Umbriel	0.4563838	5.32		0.5
17	435.909790		5		Titania	0.7470 .	6.236		0.75
18	583.519630		6		Oberon	1. $\alpha=2.99$	7.637		1.
		III	1		618-656				
			2		819-1113				
			3		1209-1228				
			4		1685-1743				
			5		2438-2758				
			6		3067-3692				
								$\beta=6.39$	
19	4254.116700	IV	1		Francisco	0.2139946		6.59	
20	7218.710300		2		Caliban	0.3631319		7.469	
21	7961.082700		3	1	Stephano	0.4			
22	8410.678200			2	Trinculo	0.423		6.359	
23	11297.873000		4	1	Sycorax	0.5682881			
24	11316.714000			2	Margaret	0.569		6.519	
25	15801.542000		5	1	Prospero	0.795			
26	16239.657000			2	Setebos	0.8169		6.1	
27	19879.088000		6		Ferdinand	1. . $\alpha=\mathbf{2 . 4 2 - 7 9 ~}$		5.837	
						$\alpha=2.42$			

$(\alpha \approx 2.65, \beta \approx 6.32, \alpha \beta \approx 16.75)$

Table 8: Dynamic parameters of the Sun and solar system planets.

Planetary names	The core temperature, \mathbf{T}	Volume (V), cub. \mathbf{m}	\mathbf{I}_{O}	$\mathbf{I}_{O}{ }^{*}$	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\alpha} \boldsymbol{\beta}$
Sun	$1.35-1.5 \cdot 10^{7}$	$1.41 \cdot 10^{27}$	0.171	0.34	2.94	13.1	38.514
Jupiter	$20-25 \cdot 10^{3}$	$14.3-15.2 \cdot 10^{23}$	0,20	0.262	3.04	11.2	34.05
Saturn	$11.7-20 \cdot 10^{3}$	$8.27-9.23 \cdot 10^{23}$	0,22	0.227	3.2	11.57	37.024
Uranus	$4.737-12 \cdot 10^{3}$	$6.39-6.833 \cdot 10^{22}$	0,23	0.212	2.65	6.32	16.75
Neptune	$7-14 \cdot 10^{3}$	$6,254-6.58 \cdot 10^{22}$	0,26	0.2	3.1	10.64	32.984

Here I_{O} is the reduced moment of inertia.

Table 9: The S parameter values for the solar system giants and the Sun.

Planetary names	The core temperature, \mathbf{T}	Volume (V) cub. \mathbf{m}	\mathbf{I}_{0}	$\boldsymbol{\alpha} \boldsymbol{\beta}$	\mathbf{S}	$\mathbf{S} \sim$
Sun	$1.35 \cdot 10^{7}$	$1,41 \cdot 10^{27}$	0.34	38.514	$0.07977 \cdot 10^{20}$	$0.08 \cdot 10^{20}$
Jupiter	$25 \cdot 10^{3}$	$1,43 \cdot 10^{24}$	0.2	34.05	$0.08399 \cdot 10^{20}$	$0.08 \cdot 10^{20}$
Saturn	$12.15 \cdot 10^{3}$	$8,27 \cdot 10^{23}$	0.22	37.024	$0.08356 \cdot 10^{20}$	$0.08 \cdot 10^{20}$
Uranus	$2.45 \cdot 10^{3}$	$6,833 \cdot 10^{22}$	0.2	16.75	$0.08325 \cdot 10^{20}$	$0.08 \cdot 10^{20}$
Neptune	$1.2 \cdot 10^{3}$	$6,254 \cdot 10^{22}$	0.2	32.984	$0.08302 \cdot 10^{20}$	$0.08 \cdot 10^{20}$

The given values of the parameter S indirectly sustain the planetary spacing rule.

Having the values \mathbf{T}, \mathbf{V} and $\mathbf{I}_{\boldsymbol{o}}$ selected (from Table 8), we see that the parameter \mathbf{S}, determined by the following formula:

$$
\begin{equation*}
S=\frac{V}{T 0} \frac{1}{I \alpha \beta}, \tag{8}
\end{equation*}
$$

takes on close values for planet - giants and the Sun.

4. Conclusions

Formally, α, in the units of the $3^{\text {rd }}$ moon, is the upper boundary of the first group or the distance to the $6^{\text {th }}$ moon. Then, $\alpha \beta$ is the distance to the $6^{\text {th }}$ moon within the next group or the upper boundary of the second group.

Thus, a set of values α and β can be determined from formulae (1) - (7) using two radii of the orbits of moons assigned to the given positions. Comparing these values with the values of T, V and I_{O} in formula (8), the fittest parameter values can be found.

References

1. Bakulev V.M. The Titius-Bode law of planetary distances: new approach (arXiv:astro-ph/0601369 2006astro.ph..1369B).
2. Cuntz Manfred: 2012, Publications of the Astronomical Society of Japan, 64, No.4, Article No.73, 10 pp.
3. Griv E.: 2006, European Planetary Science Congress. Berlin, Germany, 18-22 September 2006, p. 22.
4. Hayes Wayne, Tremaine Scott: 1998, Icarus, 135, Issue 2, pp. 549-557.
5. Kotliarov I. The Titius-Bode Law Revisited But Not Revived (arXiv:0806.3532 2008arXiv0806.3532K).
6. Pankovic Vladan, Radakovic Aleksandar-Meda. A Close Correlation between Third Kepler Law and Titius-Bode Rule (arXiv:0903.1732 2009arXiv0903.1732P).
7. Poveda A., Lara P.: 2008, Revista Mexicana de Astronomía y Astrofisica, 44, 243-246 (http://www.astroscu.unam.mx/~rmaa/).
8. Zawisawski Z., Kosek W., Leliwa-Kopystyski J.: 2000, $A \& A T, 19$, Issue 2, 177-190.
