
MODEL OF DEGENERATE DWARF WITH SPIN-POLARIZED

ELECTRON SYSTEM

M.V. Vavrukh, D.V. Dzikovskyi, N.L. Tyshko

Dpt of Astrophysics of Ivan Franko National University of Lviv,
Ukraine, mvavrukh@gmail.com

ABSTRACT. A three-parametric model of a mas-
sive degenerate dwarf was proposed. Unlike paramag-
netic state of electron system in the standard Chan-
drasekhar model electrons are considered in a partially
spin-polarized state. The parameters of the model
are: x0 – the relativism parameter at stellar centre,
µe = ⟨ZA ⟩ – the average chemical composition param-
eter and ζ – the degree of spin polarization of the
electron system. The macroscopic characteristics (e.g.
mass, radius, energy) as functions of the model param-
eters were obtained from the solution of the mechanical
equilibrium equation. The electron spin polarization
was shown to lead to the increase of stellar radius and
especially to mass compared with the corresponding
characteristics of the standard model. The application
of the proposed model to interpreting the stability of
massive dwarfs in binary system was discused.
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1. Introduction

In the past two decades dwarfs with different char-
acteristics were discovered with the help of the space
telescopes. Therefore the problem of developing the
general theory of white dwarfs, including hot dwarfs
with great luminosities and dwarfs with great masses,
became urgent. The correct consideration of the inter-
particle interactions and of the general relativity effects
leds to the conclusion that the maximum of the dwarf
mass, in which the stability is disturbed, is a few per-
cent less than the weight limit, which is derived in stan-
dard Chandrasekhar model (Vavrukh et al., 2014). At
the same time the observed data indicate the avaibil-
ity in a binary system of dwarfs with masses, which
are very close to the Chandrasekhar limit, or exceed
it. The search of the mechanism, which can provide
the stability of dwarfs with great masses, is one of the
urgent tasks for these objects. In this work, we pro-
posed a model of the cold degenerate dwarfs with spin-

polarized electron system, which corresponding mag-
netic field. The homogeneous magnetic field does not
affect directly the star mechanical equilibrium, but it
may cause the redisribution of electrons by energies as
the result of spins interaction with the field. The re-
sult is two subsystems of electrons, with opposite spins,
each of which has its Fermi sphere. At absolute zero
the temperature has the distribution of electrons by
the wave vectors:

nk,σ = θ(kσF − k), σ = ±1, (1)

where k+F > kF , k
−
F < kF , kF – Fermi waveguide num-

ber in paramagnetic model with the same general con-
centration of electrons.
The defining of partial electron concentrations in

these two subsystems is determined by the ratios

n+ =
1

V

∑

k

nk,+, n− =
1

V

∑

k

nk,−. (2)

We introduce the value

ζ =
1

n
(n+ − n−), n = n+ + n−, (3)

which determines the degree of spin-polarization of
electron system. From the equation (3) we have found
that

n+ =
n

2
(1 + ζ), n− =

n

2
(1− ζ). (4)

With the ratios (2) we introduce the expression for
the waveguides of Fermi numbers for both systems

k+F =kFλ+, k−F = kFλ−, kF = (3π2n)1/3,

λ+ = (1 + ζ)1/3, λ− = (1− ζ)1/3.
(5)

The model described here was considered in many
works, devoted to the equation of solid state physics
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both at T = 0K, and at low temperatures. The elec-
tron subsystem here consideres not non-relativistic,
but thermodynamic characteristics calculated taking
into account the electron interactions (Hong & Mahan,
1995; Tanaka & Ichimaru, 1989; Ortiz & Ballone,
1994; Ortiz & Ballone, 1997).

2. The dwarf mechanical equilibrium equa-
tion

The equation of model (1) – (5) state is derived by
a simple generalization equation of state for param-
agnetic system (Vavrukh et al., 2011). The equation
of state in the spatially two-component homogeneous
case of the electron-nuclear model at T = 0K has a
parametric representation:

P (x) =
∑

σ

Pσ(x), Pσ(xσ) =
πm4

0c
5

3h3
Fσ(xσ),

Fσ(xσ) = 4

xσ
∫

0

dy y4

(1 + y2)1/2
,

ρ(x) = muµe

∑

σ

nσ =
muµe

6π2

(moc

h̄

)3∑

σ

x3
σ,

(6)

where xσ = h̄kσF /m0c – is relativism parameter, mu –
mass nuclear unit, µe = ⟨ZA ⟩ – the average chemi-
cal composition, (Z – nuclear charge, A – mass num-
ber), m0 – electron mass, c – speed of light, Pσ(x) –
the electron partial pressure, ρ(x) – mass density of
the nuclear subsystem. The pressure ratio in a spin-
polarized model to the pressure in the paramagnetic
model equals: C1(ζ) = 1

2

∑

σ λ
4
σ at the border x ≫ 1

and C2(ζ) =
1
2

∑

σ λ
5
σ at the border x ≪ 1. From this

follows that the pressure in the spin-polarized model is
greater than the pressure in the paramagnetic model
at the same value x, and the functions C1(ζ), C2(ζ)
change within the limits: 1 ≤ C1(ζ) ≤ 21/3, 1 ≤
C2(ζ) ≤ 22/3.

To obtain the equation of state for inhomogeneous
model, we should perform replacement x → x(r), Pσ →
Pσ(x(r)), ρ → ρ(r), xσ → xσ(r). According to
the formulas (5), xσ(r) = x(r)λσ, where x(r) =
h̄kF (r)(m0c)

−1 – is the relativism parameter value in
a paramagnetic state.

Let us consider the mechanical equilibrium of star

dP (r)

dr
= −Gρ(r)

M(r)

r2
,

dM(r)

dr
= 4πr2ρ(r), (7)

where P (r) – is the pressure on the sphere of radius r,
ρ(r) – density on this sphere, M(r) – mass inside the
sphere. The system of equations (7) is reduced to the
nonlinear differential equation for x(r),

1

r2
d

dr

{

r2





λ5
+

√

1 + x2(r)λ2
+

+
λ5
−

√

1 + x2(r)λ2
−



×

× x(r)
dx

dr

}

= −G(muµe)
2 64π2m2

0c
4

3(hc)3
x3(r),

(8)

where λ+, λ− – are the prescribed parameters,
and λ+ + λ− = 2.

3. Full polarization case

In the particular case of full polarization, when ζ = 1
(λ− = 0, λ+ = 21/3), in dimensionless variables

ξ =
r

λ
, y+(ξ) = (ε+0 )

−1{[1 + λ2
+x

2(r)]1/2 − 1} (9)

the equation (8) coincides its form with the equation
of paramagnetic model

1

ξ2
d

dξ

{

ξ2
dy+
dξ

}

= −
{

y2+(ξ) +
2

ε+0
y+(ξ)

}3/2

, (10)

however in this equation parameter x0λ+ is used in-
stead of x0. Herewith the scale λ+ is determined by
the ratio

16Gπ2

3(ch)3
[muµem0c

2ε+0 λ]
2 = 1, (11)

where ε+0 = [1+x2
0λ

2
+]

1/2− 1. The total mass of dwarf
is determined by the ratio

M(x+
0 , µe) =

√
2

µ2
e

M0 M(x+
0 ),

M(x+
0 ) =

ξ1(x
+

0
)

∫

0

dξ ξ2
(

y2+(ξ) +
2

ε+0
y+(ξ)

)3/2

.

(12)

Herewith ξ1(x
+
0 ) – the dimensionless radius of a dwarf,

which is determined from the condition y(ξ1(x
+
0 )) = 0.

From the last formula it follows that the maximum
mass of a dwarf which corresponds x0 ≫ 1, is equal

Mmax =
√
2
M0

µ2
e

2,01824 · · · , (13)

that is, it exceeds Chandrasekhar limit by
√
2 times.

The radius of dwarf is equal

R(x+
0 , µe) = ξ1(x

+
0 )λ =

R0ξ1(x
+
0 )

µe

√
2

ε+0
. (14)
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The scales of mass and radius (M0, R0) are used in
the formulas (13), (14) defined by the formulas

R0 =

(

3

2

)1/2
1

4π

(

h3

cG

)1/2
1

m0mH
,

M0 =
m0c

2λε0(x0)

GmH
=

(

3

2

)1/2
1

4π

(

hc

Gm2
H

)3/2

mH .

(15)
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Figure 1: “Mass-radius” relations at different values ζ
(ζ = 0 – solid curve, ζ = 0.2 – curve 1, ζ = 0.4 –
curve 2, ζ = 0.6 – curve 3, ζ = 0.8 – curve 4 )

As it can be seen from the ratio (14), the radius of
dwarf values in the ultrarelativistic region (x0 ≫ 1)
R(x+

0 , µe) ⇒ R0 · 6,89685 · 21/2(µex0λ+)
−1 exceeds

the analogous value at the same concentration in
the star centre by 21/2λ−1

+ = 21/6 times. In figure 1
the “mass-radius” relations obtained in the standard
(solid curve) and spin-polarized models at different
values of the parameter ζ, are compared to each other.

4. The equilibrium equation solutions at
arbitrary polarization

In a general case at arbitrary value of the parameter
ζ, the equation (8) also can be reduced to the equation
(10) using the substitution

∑

σ=±
λ3
σ{(1 + x2(r)λ2

σ)
1/2 − 1} = εζ0y(ξ),

where

εζ0 =
∑

σ=±
λ3
σ{(1 + x2

0(r)λ
2
σ)

1/2 − 1}.

(16)

To record the right side of the equation (8) by y(ξ), we
define x(r) from the ratio (16). We reduce this ratio
to the biquadratic equation. Positive and valid root of
this equation is written as

x(r) = 2−1/2(λ8
+ + λ8

−)
−1[b(y)− φ(y)]1/2, (17)

b(y) = 2{(λ8
+ + λ8

−)[(ε
ζ
0y)

2 + 4εζ0y]+

+ 4(λ+λ−)
3(λ5

+ + λ5
−)},

φ(y) = {b2(y)− 4ac(y)}1/2 =

= 4(2 + εζ0y)(λ+λ−)
3{(λ+λ−)

2×

× [(εζ0y)
2 + 4εζ0y] + (λ5

+ + λ5
−)

2}1/2.

(18)

At the limit of star y(ξ) = 0, therefore b(0) = φ(0) =
8(λ+λ−)

3(λ5
+ + λ5

−), and this provides the implemen-
tation of the equality x(R) = 0 at the arbitrary value
ζ.
The equation (8) in a dimensionless form is

1

ξ2
d

dξ

(

ξ2
dy

dξ

)

= −{
√
2(λ8

+ + λ8
−)

−1×

× (εζ0)
−1[b(y)− φ(y)]1/2}3.

(19)

The boundary conditions to y(0) = 1, y′(0) = 0, and
the condition y(ξ) ≥ 0 corresponds to this equation.
The scale λ is determined by the ratio

32π2G

3(hc)3

{

muµem0c
2λ

εζ0
2

}2

= 1, (20)

which at the limit ζ → 0 coincides with the equality in
the paramagnetic model.
The equation (19) – is two-parametric, with the pa-

rameters x0 and ζ. The equation (19) takes the form
of the equation (10) in the case of large values of x0

1

ξ2
d

dξ

(

ξ2
dy

dξ

)

≈ −
{

y2(ξ) +
4

εζ0
y(ξ)

}3/2

, (21)

the parameter λ is determined by the equality

64π2G

3(hc)3
{m0c

2λεζ0muµe}2(λ4
+ + λ4

−)
−3 = 1. (22)

The equation solutions dependence (19) on the
parameters x0, ζ is illustrated figures 2 and 3, and the
figure 4 shows the dependence of the dimensionless
radius of star ξ1(x0, ζ) on these parameters.

4. The macroscopic characteristics of dwarfs

The equation solutions (19) determine the macro-
scopic characteristics of star dependence on the param-
eters of model x0, µe, ζ. In particular the total mass of
star is equal to
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Figure 2: The equation solutions (19) at fixed value
ζ = 0.9
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Figure 3: The equation solutions (19) at fixed value
x0 = 1 (ζ = 0 – solid curve, ζ = 0.2 – curve 1,
ζ = 0.4 – curve 2, ζ = 0.6 – curve 3, ζ = 0.8 – curve
4 )

M(x0, µe|ζ) =
M0

µ2
e

M(x0|ζ),

M(x0|ζ) = 2
√
2{εζ0(λ8

+ − λ8
−)}−3×

×
ξ1(x0|ζ)
∫

0

dξ ξ2 [b(y(ξ))− φ(y(ξ))]
3/2

=

= ξ21(x0|ζ)
∣

∣

∣

∣

dy

dξ

∣

∣

∣

∣

ξ=ξ1(x0|ζ)
.

(23)

The radius is determined by the ratio

R(x0, µe|ζ) = λξ1(x0|η) = 2R0
ξ1(x0|ζ)
µeε

ζ
0

. (24)
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Figure 4: Dependence ξ1(x0, ζ) of the dimensionless
star radius on parameter x0 at different values ζ (ζ =
0 – solid curve, ζ = 0.2 – curve 1, ζ = 0.4 – curve 2,
ζ = 0.6 – curve 3, ζ = 0.8 – curve 4 )
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Figure 5: The mass dependence on parameter x0 at
different values ζ (ζ = 0 – solid curve, ζ = 0.2 – curve
1, ζ = 0.4 – curve 2, ζ = 0.6 – curve 3, ζ = 0.8 –
curve 4 )

The M(x0|ζ), R(x0, µe|ζ) dependence on the parame-
ter x0 is illustrated in figures 5, 6.

The average value of the electron kinetic energy
Ekin, the potential energy of nuclear subsystem W
gravitational interaction, and the total energy (taking
into account the electrons rest energy) Ẽ is determined
by the ratios
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Figure 6: The radius dependence on parameter x0 at
different values ζ (ζ = 0 – solid curve, ζ = 0.2 – curve
1, ζ = 0.4 – curve 2, ζ = 0.6 – curve 3, ζ = 0.8 –
curve 4 )
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Figure 7: The total energy E dependence on parameter
x0 at different values ζ (ζ = 0 – solid curve, ζ = 0.2 –
curve 1, ζ = 0.4 – curve 2, ζ = 0.6 – curve 3, ζ = 0.8 –
curve 4 )

Ekin(x0, µe|ζ) =
E0

µ3
e

(

2

εζ0

)3 ξ1
∫

0

dξ ξ2
1

2
×

×
∑

σ

{

x3
σ(ξ)[(1 + x2

σ(ξ))
1/2 − 1]− 1

4
Fσ(x)

}

,

W (x0, µe|ζ) =
E0

µ3
e

(

2

εζ0

)2 ξ1
∫

0

dξ ξ3 x3(ξ)
dy

dξ
=

= −3

4
· E0

µ3
e

(

2

εζ0

)3 ξ1
∫

0

dξ ξ2
1

2

∑

σ

Fσ(xσ(ξ)),

(25)
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Figure 8: The total energy Ẽ dependence on parameter
x0 at different values ζ (ζ = 0 – solid curve, ζ = 0.2 –
curve 1, ζ = 0.4 – curve 2, ζ = 0.6 – curve 3, ζ = 0.8 –
curve 4 )

E(x0, µe|ζ) = Ekin(x0, µe|ζ) +W (x0, µe|ζ) =

=
E0

2µ3
e

(

2

εζ0

)3 ξ1
∫

0

dξ ξ2×

×
∑

σ

{

x3
σ(ξ)[(1 + x2

σ(ξ))
1/2]−Fσ(xσ(ξ))

}

,

Ẽ(x0, µe|ζ) = Ekin(x0, µe|ζ) +W (x0, µe|ζ)+

+m0c
2N(x0, µe|ζ) =

3

4
· E0

µ3
e

(

2

εζ0

)3
∑

σ

ξ1
∫

0

dξ ξ2×

×
{

xσ(ξ)[(1 + x2
σ(ξ))]

1/2 − ln[xσ(ξ) + (1 + x2
σ(ξ))

1/2]

}

.

Herewith xσ(ξ) is determined by the equation (17),
where y(ξ) – the equation solution (19).

It is likely that the model has a physical mean-
ing with a small value of the parameter polarization
(ζ ≪ 1). In this case the equation (19) is simplified,
because with precision to ζ2

λ5
+(1 + x2(r)λ2

+)
−1/2 + λ5

−(1 + x2(r)λ2
−)

−1/2 =

= 2(1 + x2(r))−1/2 · {1 + ζ2 · f(x(r)) + · · · },

f(x) =
5

9
− 1

2
x2(1 + x2)−1 +

1

6
x4(1 + x2)−2.

(26)

Proceeding to dimensionless variables

r = λξ, µ(r) = m0c
2{(1 + x2

0)
1/2 − 1}y(ξ), (27)

We summarize the equation (19) to this dimensionless
form:
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1

ξ2
d

dξ

{

ξ2
dy

dξ

}

= −
(

y2 +
2

ε0
y

)3/2

+

+
1

6ξ2
d

dξ

{

ξ2
(y2 + 2

ε0
y)(2y2 + 4y

ε0
+ 1

ε2
0

)

(y + 1
ε0
)4

dy

dξ

}

.

(28)

Herewith the scale λ is determined by the ratio

32π2G(muµem0c
2λε0)

2

3(hc)3
= 1 +

5

9
ζ2. (29)

The equation solution (28) can be found by successive
approximations for small values ζ, using substitution

y(ξ) = y0(ξ) + ζ2y1(ξ). (30)

The mass and radius of dwarf dependence on param-
eters of model is given by

M(x0, µe, ζ) ∼=
M0

µ2
e

(

1 +
5

6
ζ2
)

M(x0),

R(x0, µe, ζ) ∼=
R0

µeε0

(

1 +
5

18
ζ2
)

ξ1(x0),

(31)

where M(x0), ξ1(x0) are the characteristics of stan-
dard model (paramagnetic).

5. Summary and conclusions

The degree of spin polarization of the dwarf electron
system significantly affects its characteristics as it fol-
lows from the calculations, it leads to the increase the
mass and radius. At an arbitrary value ζ the max-
imum dwarf mass exceeds this value in the standard
model. Within the spin-polarized model the existence
of dwarfs in binary systems can be explained, where the
dwarfs mass reaches the value 1,5M⊙ and it is at the
limit of stability (or beyond it) in terms of the standard
model (Vavrukh et al., 2012). Above we considered a

somewhat idealized model, in which the parameters
µe and ζ are constants independent of the coordi-
nates. From physical considerations, the degree of
spin-polarization electron subsystem depends on the
temperature and magnetic field values. Obviously,
the global magnetic field has a dipole character, and
therefore it is concentrated in the external star regions.
Thereby the degree of spin polarization is greater in
the outer dwarf regions. In term of strong accretions
on the massive magnetic dwarf, in its surface layers
thermonuclear reaction can start, which will lead
to their heating and reducing the degree of spin
polarization. There may be the conditions, in which
the mass of star exceeds the permissible critical mass
(which is a function of ζ), resulting in the collapse
and supernova explosion. Hence follows the need for
accurate description of a dwarf within the model with
the parameter ζ, which is a function of the distance
from the star center, as well as the consideration
of other factors – interparticle interactions and the
effects of general relativity theory.
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