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ABSTRACT. A modification of classical Gauss’ 

method for determination of Keplerian elements from the 
observed positions is considered in this paper. The 
modification involves the exhaustive enumeration of all 
possible orbital plane positions in order to improve the 
method’s reliability. It has been shown that such an 
approach requires a priori information on the pattern of 
the celestial body's motion, particularly, whether its 
motion is direct or retrograde. 
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 Introduction 

The method for determination of orbital elements of 
celestial bodies was developed by C.F.Gauss as early as at 
the beginning of the 19th century when the first asteroids were 
discovered. Up to the present time, this method has been 
successfully employed for preliminary orbit determination 
for both circumsolar and near-Earth orbital motion. 

However, the method presents some limitations in its 
usage (Samotokhin et al., 2014). In particular, the orbital 
arc whose length is used for calculations should not be too 
long as in this case difficulties with solution of some 
equations may emerge. On the other hand, the orbital arc 
should not be too short as in this case uncertainties 
associated with observational errors may occur. 

 
 
 

 
Figure 1. The distribution of the sum of squared 
differences between the observed and calculated positions 
of the test celestial body for different orbital inclinations. 

 
 

Numeral experiment 
 
These and other limitations of Gauss' method can be 

overcome by exploiting capabilities of modern computers. 
Keplerian elements define the size and shape of the conic 
(the semi-major axis and eccentricity); a celestial body's 
position at a given instant of time (the time of perigee 
passage); the conic section orientation within the orbital 
plane (the argument of perigee); and, finally, the orbital plane 
position with regard to the reference coordinate system (the 
inclination and longitude of the ascending node). 

At a two-body approximation the orbital plane always 
intersects the centre of gravity. With this fact the orbital 
plane position can be independently determined using the 
method of exhaustive enumeration of all possible values 
of inclination and longitude of the ascending node 
(Bondarenko et al., 2014a). All orbital elements can be 
derived for each pair of elements i and Ω using Gauss' 
method for determination of orbital elements from two 
position vectors and instants of time (Escobal, 1970). 
Based on these orbital elements, it is possible to define a 
celestial body's position for the current i and Ω. Using the 
differences between the observed and calculated in such a 
manner positions (O-C), it is possible to select the 
inclination and longitude of the ascending node which 
define the actual position of the orbital plane. It is evident 
that it is the minimum difference (O-C) that corresponds 
to the actual position of the orbital plane. 

 
 

 
Figure 2. The distribution of the sum of squared 
differences between the observed and calculated positions 
of the test celestial body for different longitudes of the 
ascending node. 
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To study the behaviour of the dependence of the sum of 
squared differences (O-C) on the adopted values of 
inclination and longitude of the ascending node, we set up 
a numerical experiment. In this experiment we simulated 
the search of the position of a test celestial body's orbital 
plane. Keplerian elements for the heliocentric orbit were 
selected as follows: 

the semi-major axis а=2.48255 AU; 
the eccentricity е=0.15326; 
the time of perigee passage 19.06.2011; 
the argument of perigee ω=79.325o; 
the longitude of the ascending node Ω=108.395o; 
the inclination i=10.252o. 

Using the methods described in (Bondarenko et al., 
2014b), we determined the sums of squared differences 
( )O C  for all possible pairs of orbital elements, namely 
the inclination 0≤i≤180o and longitude of the ascending 
node 0≤Ω<360o. From this data set we selected only those 
values which meet the following requirement: 

2( ) 1.4 '.O C    

The obtained dependencies are shown in Figs. 1 and 2. 
The dependence of 2( )O C   on the inclination is 

reflection symmetric with regard to the value i=90o, and it 
exhibits the largest number of the selected values 

2( )O C   near i=10.5o and i=169.5o. 
 

The dependence of 2( )O C   on the longitude of the 
ascending node is the same for the ranges 0≤Ω<180o and 
180o≤Ω<360o, and it exhibits the largest number of the 
selected values 2( )O C   near Ω=108.5o and Ω=288.5o. 

 
Conclusion 
 
Thus, to ultimately determine the orbital plane using a 

modified Gauss'' method suggested in (Bondarenko et al., 
2014a), a priori information on the pattern of the celestial 
body's motion is required, particularly, whether its motion 
is direct or retrograde. This requirement is similar to that 
one for the application of Gauss' method for determination 
of orbital elements from two position vectors and instants 
of time (Escobal, 1970). 
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