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ABSTRACT. Numerical simulations of the cold
supersonic flows in different astrophysical problems
meets with the loss of precision difficulty. For to
overcome the difficulty it was suggested earlier to
use conservation entropy equation instead of energy
conservation law. In the paper we analyse quanti-
tatively the error what appears in the shocked flow
when isoentropic equations are used. The isentropic
equations of gas dynamics can be used only when
there are no shocks in the solution or when they are
weak and do not significantly affect the flow. The
results described here were represented as a talk
at the 16-th Gamow Summer School: ”Astronomy
and beyond: Astrophysics, Cosmology, Cosmomicro-
physics, Astroparticle Physics, Radioastronomy and
Astrobiology” 14-20 August, 2016, Odessa, Ukraine.
The complete paper is published in Bisnovatyi-Kogan
& Moiseenko, 2016.
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1. Introduction

In numerical simulations of astrophysical problems,
instead of the energy equation, sometimes the equation
for the density of entropy is used, which is assumed to
be conserved throughout the flow, including at discon-
tinuities in the form of shock waves. As a rule, this
approach is used for modelling of cold supersonic gas
flows. In these flows the internal energy density of
the gas is considerably lower than the kinetic energy
density. Large numerical errors can appear in tem-
perature (pressure) calculations for flows of such kind.
This approach is mostly used in astrophysics, where
crude, approximate numerical results may be accept-
able when there is large scatter in the observational
data and in their interpretation. Qualitatively such nu-
merical approach was probably discussed for the first
time in the paper by Ryu et al. (1993). Although the
use of such isentropic schemes has continued (see for

example B[2,3], the errors in the law of energy conser-
vation due to the application of entropy conservation
at strong discontinuities have not been analysed. Ev-
idently, an isentropic jump requires removal of energy
from the post-shock gas, since the entropy of the gas in
a real jump (shock wave) increases, and heat extraction
is needed to conserve it. If S1 and S2 are the entropies
of the gas ahead of and after the jump, then S2 = S1

for an isentropic shock and S2 > S1 for a Hugoniot adi-
abat. According to the second law of thermodynamics,
in order to reduce the entropy to S1 after the jump, it
is necessary to lose an amount of heat (i.e., reduce the
energy by ∆Q = T̄ · (S2 − S1), where T̄ is the average
temperature over the thickness of the shock.
In this paper we consider the conditions at an

”isentropic” discontinuity for power law equations of
state of the form P = K(S)ργ and make a quantitative
estimate of the numerical errors in the conservation of
energy.

2. Conditions at discontinuities: the Hugo-
niot adiabat and an ”isentropic” discontinuity

2.1. Hugoniot adiabat

The conditions at a plane discontinuity in the Hugo-
niot adiabat are reduced to the conservation of mass,
momentum, and energy, which for a discontinuity ref-
erence frame have the form (Loytsansky, 1987):

ρ1v1 = ρ2v2, (1)

P1 + ρ1v
2
1 = P2 + ρ2v

2
2 , (2)

E1 +
P1

ρ1
+
v21
2

= E2 +
P2

ρ2
+
v22
2
. (3)

Equation of state: P = K(S)ργ . Expression for the
internal energy:

E =
1

γ − 1

P

ρ
=
K(S)

γ − 1
ργ−1. (4)

Here v is the velocity, ρ is the density, P is the pres-
sure, T is the temperature, γ is the adiabatic index, E
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is the internal energy, and S is the entropy. A subscript
”1” indicates a quantity ahead of the front and ”2” be-
hind the front. Equations (1- 3) yield an equation for
the Hugoniot adiabat (Loitsyanskii, 1987), which re-
lates the density and pressure ahead of and after the
jump:

P2

P1
=

(γ + 1)ρ2 − (γ − 1)ρ1
(γ + 1)ρ1 − (γ − 1)ρ2

, (5)

as well as the relationship of other parameters before
and after the jump:

v1 − v2 =

√
2(P2 − P1)

√
ρ ((γ − 1)P1 + (γ + 1)P2)

1/2
(6)

Introducing the Mach number of the shock wave
M1 = v1

c1
we obtain (Landay& Lifshitz, 1988 ):

ρ2
ρ1

=
v1
v2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

, (7)

P2

P1
=

2γ

γ − 1
M2

1 − γ − 1

γ + 1
, (8)

T2
T1

= 1 +
2(γ − 1)

(γ + 1)2M2
1

(M2
1 − 1)(1 + γM2

1 ), (9)

M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

. (10)

2.1. ”Isenropic” disontinuity

For an ”isentropic” discontinuity, the energy equa-
tion (3) is replaced by an equation for the conservation
of entropy, which for an ideal gas with the equation
of state P = ρℜT and an adiabatic index γ, takes the
form

S =
ℜ

γ − 1
ln

(
P

ργ

)
+ C1. (11)

Since the gas constant ℜ and C1 are assumed to be the
same before and after the discontinuity, the conserva-
tion of entropy can be written in the form

P1

ργ1
=
P2

ργ2
. (12)

From equations (1) and (2) excluding v2 we get

P1 + ρ1v
2
1 = P2 +

ρ21
ρ2
v21 . (13)

Defining sound speed as c =
√
γ P

ρ , we get

1

γ
c21 + v21 =

P2

P1

c21
γ

+
ρ1
ρ2
v21 . (14)
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Figure 1: The ratio of the post- and pre-discontinuity
densities ρ2 and ρ1 as a function of the Mach number
M1 ahead of a discontinuity (the Mach number of the
shock). The smooth curve is for an adiabatic shock
wave and the dashed curve, for an ”isentropic” discon-
tinuity.

Using (12) and define the post-shock Mach number as
M2 = v2

c2
, we obtain

1

γ
c21 + v21 =

(
ρ2
ρ1

)γ
c21
γ

+
ρ1
ρ2
v21 , (15)

M2
1 +

1

γ
=

(
ρ2
ρ1

)γ
1

γ
+
ρ1
ρ2
M2

1 . (16)

Using the notation x = ρ2

ρ1
we obtain

M2
1 =

xγ − 1

γ

x

x− 1
; (17)

P2

P1
= xγ ;

T2
T1

= xγ−1;
v2
v1

=
1

x
;
c2
c1

= x
γ−1
2 . (18)

The post-shock Mach number can be written in the
following form

M2
2 = v22

ρ2
γP2

=
v21
γx2

xρ1
P1

P1

P2
=
v21
γx

ρ1
P1

1

xγ
=

M2
1

xγ+1

(19)
The plots for the following values x =
ρ2

ρ1
(M1) ,

P2

P1
(M1) ,

T2

T1
(M1) , and v2

v1
(M1) are at

the Figures (1-4) for a Hugoniot adiabat and for an
”isentropic” jump for the adiabatic index γ = 5/3.
The total energies before and after the jump, includ-

ing the work of pressure forces, are given by

ε1 = E1 +
P1

ρ1
+
v21
2

=
γ

γ − 1

P1

ρ1
+
v1
2

=

c1
γ − 1

+
v21
2

= c21

(
M2

1

2
+

1

γ − 1

)
, (20)
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Figure 2: The ratio of the post- and pre-discontinuity
pressures P2 and P1 as a function of the Mach number
M1 ahead of a discontinuity (the Mach number of the
shock). The smooth curve is for an adiabatic shock
wave and the dashed curve, for an ”isentropic” discon-
tinuity.

ε2 = E2 +
P2

ρ2
+
v22
2

= c22

(
M2

2

2
+

1

γ − 1

)
. (21)

For M1 ≫ 1 we have

M2
1 =

xγ

γ
, M2

2 =
1

γx
. (22)

The relative change in the total energy at an ”isen-
tropic” jump is

ε2 − ε1
ε1

=

γ
γ−1

P2

ρ2
+

v2
2

2

γ
γ−1

P1

ρ1
+

v2
1

2

− 1. (23)

Taking into account (18) we obtain

ε2 − ε1
ε1

=

1
γ−1

(
xγ−1 − 1

)
+

M2
1

2

(
1
x2 − 1

)
1

γ−1 + M1

2

. (24)

Here x is an implicit function of M1 determined
by (17). Figure 5 is a plot of the relative change
in the total energy for a gas passing through an
”isentropic” jump as a function of the Mach number
of the upstream flow. These plots show that as the
amplitude of a strong discontinuity (jump) increases,
the parameters behind it are significantly different for
the adiabatic and ”isentropic” cases. Thus, for an
”isentropic” jump the density behind the jump can
increase infinitely for M1 → ∞ , while for an adiabatic
shock the density behind it can increase only by a
factor of γ+1

γ−1 . The velocity of the gas passing through
an ”isentropic” jump tends to zero with increasing
M1, while in the adiabatic case it falls only by a factor
of γ−1

γ+1 for M1 → ∞.
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Figure 3: The ratio of the post- and pre-discontinuity
temperatures T2 and T1 as a function of the Mach num-
ber M1 ahead of a discontinuity (the Mach number of
the shock). The smooth curve is for an adiabatic shock
wave and the dashed curve, for an ”isentropic” discon-
tinuity.

3. On the possibility of using the isentropic
equations for numerical modelling

Using the ”isentropic” equations for modelling gas
flows can lead to substantial errors when shock waves
are present. The size of the errors increases with in-
creasing shock intensity.
In numerical simulations of supernova explosions

(see e.g. Moiseenoo et al., 2015), the shock Mach
number is ∼30. With this shock amplitude, numerical
modelling of a supernova with the isentropic equations
would lead to errors of an order of magnitude in the
post-shock parameters.
An isentropic system of gas dynamic equations has

been used in a numerical simulation of the dynamics
of supernova bubbles (Bychkov et al., 2006). The su-
pernova shock wave, however, has a large amplitude
(the Mach number of the shock wave from the super-
nova can reach tens) and substantially determines the
structure of the flow after the shock front.
In the monograph by BIsikalo et al. (2013) devoted

to the simulations of close binary systems authors note
that gas flows appear for which the total energy density
of the gas is mainly determined by the kinetic energy
density. In this situation, when conservation of the
total energy is used, large numerical errors may arise
in calculating the temperature of the flow. The ”isen-
tropic” equations can be used for modelling this kind of
flow if shock waves do not appear or have small ampli-
tudes. The calculations show that shock waves do de-
velop in simulations of close binary systems (i.e., a ”hot
line”, ”hot point”), where the Mach number of the up-
stream flow can be ¿4) and substantially determine the
flow structure; using the ”isentropic” equations may in-
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Figure 4: The ratio of the post- and pre-discontinuity
velocities v2 and v1 as a function of the Mach number
M1 ahead of a discontinuity (the Mach number of the
shock). The smooth curve is for an adiabatic shock
wave and the dashed curve, for an ”isentropic” discon-
tinuity.

troduce substantial numerical errors in calculations of
post-shock gas flow.

In order to overcome the difficulties in calculating
cold supersonic flows, it was proposed by Ryu et al.
(1993) that simultaneous calculations be done using
the conservation equation for the total energy and the
entropy equation. In the part of the flow where there
were no shocks, the entropy equation was used. Where
shock waves developed, the energy equation was used.
A number of criteria were introduced for determining
which of these equations should be used in solving the
general system of gas dynamic equations. The intro-
duction of a ”double energy formalism” has been pro-
posed (Bryan et al., 1995), where the entropy calcula-
tions include a calculation of the time variation in the
internal energy as well as in the total energy. In the
case of a highly supersonic flow, the pressure and tem-
perature of the gas were calculated using the internal
energy equation; otherwise, the equation for the total
energy balance was used.

When irregular, moveable grids with a variable
structure are used (Springel, 2010), models of cold
and rapid flows using the total energy balance equa-
tion may lead to numerical errors in calculating the
temperature, since even small errors in calculating the
total energy (associated, for example, with the grid
reconstruction and remapping of the parameters) can
lead to substantial errors in calculating the internal
energy. It was suggested in (Springel, 2010) that the
amplitude of the developing shock waves be estimated.
When the shock Mach number does not exceed ∼1.1, it
is suggested that the entropy balance equation be used.
Another approach proposed in the same paper assumes
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Figure 5: The relative change in the total energy for
gas passing through an ”isentropic” jump as a function
of Mach number M1 of the incident flow (the Mach
number of the shock wave).

a comparison of the internal energy of a cell with its
kinetic energy at each step. In calculations of flows
with gravitation, the criterion for choosing the energy
or entropy equation might be to compare the force
created by the gas flow with the acceleration of gravity.
If the internal energy of the gas is low compared to the
gravitational energy, then the entropy equation is used.
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