DOI: http://dx.doi.org/10.18524/1810-4215.2016.29.85136

STARS WITH HIGH PROPER MOTIONS IN THE MODERN CATALOGS OF THE CDS DATABASE

V. F. Kryuchkovskiy, N. V. Maigurova
Research Institute "Mykolaiv Astronomical Observatory" (RI MAO)
54030, Nikolaev, st. Observatornaya 1, selenion@yandex.ua

Abstract

Stars with high proper motions, for the most part, are objects located in the solar neighborhood within 100 parsecs. These stars are important targets for a wide range of astrophysical problems, but the accuracy of the results depends on the completeness of the star samples. The uniform distribution over the celestial sphere is also important for kinematic studies. There are two catalogs of the fast stars in northern hemisphere, while only scattered lists of such stars are available for southern hemisphere. This paper presents the results of analysis of samples of stars with proper motions exceeding 150 mas/year from the modern catalogs of astronomical database CDS (PPMXL, SPM4, UCAC4, XPM, APOP, LSPM, Tycho2, URAT1 and WISE). Results of pairwise mutual crossidentification of the samples have shown that modern astrometric catalogs contain a significant number of false identifications of stars with large proper motions, and the total number of common stars in the resulting samples is extremely small and is not more than 20% on average.

Keywords: astronomical database, astronomical catalogs, stars: high proper motions stars

1. Introduction

Currently there are only a few ad hoc catalogs with the high proper motions (HPM) submitted in Strasburg database.

The most complete catalogs of stars with proper motions are the LSPM catalog based on the results of DSS scans from Palomar Sky Surveys (POSSI and POSSII) (Lepine et al., 2005) and compiled catalog HPM-v2 maintained by the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Ivanov, 2008).

Both catalogs contain only stars in the Northern Hemisphere. The LSPM catalog contains 61977 stars up to $21{ }^{\mathrm{m}}$ with proper motions of more than $150 \mathrm{mas} / \mathrm{yr}$. The catalog is 98% full for the stars up to 19^{m}. The HPM-v2 catalog is created on the FONAK 1.0 (Kislyuk et al., 1999) proper motions and 770 other available astronomical catalogs and sources. The catalog contains information about 618238 stars with proper motions more than $40 \mathrm{mas} / \mathrm{yr}$ up to 16^{m}. The limiting magnitude up to 17^{m} for stars belong to double or multiple system.

The NLTT Catalogue (Luyten, 1980) and Revised NLTT Catalog (Salim, 2003) are catalogs that cover whole celestial sphere. NLTT Catalogue contains 58845 stars with proper motions more than $200 \mathrm{mas} / \mathrm{yr}$. Revised NLTT Catalog include 36085 stars over whole sky, but
these catalogs are not complete and their stars are unevenly distributed over the sky (see Figure 1).

Figure 1: Distribution stars of the NLTT (up) и Revised NLTT (down) over celestial (Aitoff projection, equatorial coordinate system)

Over the last twenty years some large catalogs with stars proper motions become available for studies. Table 1 is given the catalog list that can be used for search and selection data with high proper motions stars. The list of catalogs in table 1 includes also catalog ALLWISE (Cutri et al., 2013). In this catalog, there are no proper motions. We used "d2M" field (distance separating the positions of the WISE source and associated 2MASS PSC (Cutri et al., 2003) source) for selection HPM stars. Since the mean observational epoch of WISE survey is 2010.55, only stars in range from $1.5^{\prime \prime}$ to $3.0^{\prime \prime}$ were chosen. The value 3.0 is declared as a maximal value which is used for crossidentification between 2MASS and ALLWISE data.

Table 1. Input catalogs.

Catalog, year	Limit Mag	Number of stars	Declination
LSPM, 2005	V 19.0	61977	$+0^{\circ}-+90^{\circ}$
HPM-v2, 2008	V 16	618238	$-2.5^{\circ}-+90^{\circ}$
APOP, 2015	R 20.8	100774150	$-90^{\circ}-+90^{\circ} *$
Tycho2, 2000	V 11.5	2539913	$-90^{\circ}-+90^{\circ}$
PPMXL, 2010	V 20	910469430	$-90^{\circ}-+90^{\circ}$
SPM4, 2011	V 17.5	103319647	$-90^{\circ}--20^{\circ}$
UCAC4, 2012	R 16	113780093	$-90^{\circ}-+90^{\circ}$
URAT1, 2015	R 18.5	228276482	$-24.8^{\circ}-+90^{\circ}$
XPM, 2011	B 19	313610083	$-90^{\circ}-+90^{\circ}$
ALLWISE, 2013	W 17.1	747634026	$-90^{\circ}-+90^{\circ}$

* - Except for $\pm 20^{\circ}$ from Galactic Ecquator

2.Processing and Results

At the first stage samples of stars with proper motions more $150 \mathrm{mas} / \mathrm{yr}$ were selected from HPM-v2 catalog. Then cross-identification between HPM-v2 and LSPM catalogs in common declination zone were made. The size of search window was $1^{\prime \prime}$. The number of common stars was only 17 435. The distribution of HPM stars from HPM-v2 (41 550 stars), LSPM (61 515 stars) and their common stars over celestial sphere are given in Figure 2. As can you see, if the initial samples have demonstrated conspicuous concentration of stars in the plane of the galactic equator then the distribution of the common stars is rather uniformly. Possible reasons for this fact are the difficulties in cross-identifying of the fields with high density of stars and large errors of the star proper motions in this region.

Table 2. Number of high proper motion stars.

Catalog	Number of stars with РМ ≥ 150 мсд/год		
	All	$0 \leq \delta \leq 90$	$-90 \leq \delta<0$
LSPM	61977	61977	0
Hpm-v2	41550^{*}	40034	1516
APOP	21499	5894	15605
Tycho2	16673	8202	8471
PPMXL	75628403	24416790	51211613
PPMXL*	5679268	1869585	3809683
SPM4	212685	-	212685
UCAC4	968245	59319	908926
URAT1	690982	547135	143847
WISE	11902471	4263856	7638615
XPM	4272089	144	4271945

Figure 2: The distribution of HPM stars from HPM-v2 (1), LSPM (2) and their common stars over celestial sphere (Aitoff projection, equatorial coordinate system).

At the next stage the samples with HPM stars were selected from the modern astrometric catalogs listed in the table1. The table 2 contains the results of this selection separately for Northern and Southern hemisphere. As can be seen, the number of Southern HPM stars is several times higher than the number of Northern HPM stars in PPMXL (Roser, 2010), UCAC4 (Zacharias et al., 2012), URAT1 (Zacharias et al., 2015) catalogs.

For ALLWISE data the number of entries with "d2M" more $1.5^{\prime \prime}$ amounted to almost 12 million, and the number of HPM stars for Southern hemisphere here is also twice more than Northern one.
The HPM stars in XPM catalog (Fedorov et al., 2011) are almost lacking in the Northern hemisphere. Catalog XPM also contains incredibly large number of stars with high proper motions in Southern hemisphere.

The total number of HPM PPMXL stars exceeds 75 million. Roser et al. pointed to vast majority of PPMXL stars with high proper motion must be fakes. There are two lines corresponded PPMXL data in table 2. The second line (PPMXL*) gives the number of HPM stars with 2MASS flag identification. The obtained number of the Southern HPM stars is comparable with value obtained for XPM catalog for this region. The possible explanation of this fact could be the same underlying surveys, but the distribution of HPM stars from PPMXL catalog (see figure 3) have shown the plate structure unlike a similar distribution for XPM catalog.
Probably, the most part of the Southern UCAC4 HPM stars are also fakes.

Figure 3: The distribution of HPM stars from PPMXL (up) and XPM (down) over celestial sphere (Aitoff projection, galactic coordinate system).

The pairwise mutual cross-identification of the selected HPM samples were performed. The results of search common HPM stars between different catalogs are given in table 3. The cross-identification was made with search radius of $1^{\prime \prime}$. The obtained number of common stars for all pairs is very small and not exceeds 5% of the total volume of compared samples.

Table 3. The results of the pairwise mutual crossidentifications between different catalogs.

Cross-matched Catalogs	Common stars		
	99440	45705	53735
SPM4-WISE	13539	-	13539
UCAC4-WISE	44585	24968	19617
URAT1-WISE	72081	61422	10659
XPM-WISE	27701	-	27701
PPMXL-XPM	238691	115	238576
XPM-UCAC4	10573	7	10566
SPM4-UCAC4	17910	-	17910
URAT1-UCAC4	24106	21493	2613

The cross-identification between LSPM catalog and some catalogs from table 1 was performed for samples of Northern declination zone. These results are given in table 4.

Taking into account the limiting magnitudes of the given catalogs, should be assumed that the URAT1 catalog is not complete with respect to the HPM stars in the Northern hemisphere.

Table 4. The cross-matching results with LSPM catalog.

Catalog	All	Common with LSPM
UCAC4	59319	32990
URAT1	547135	36777
HPM-v2	41550	17461
PPMXL*	1869585	51054

3. Conclusions

The samples of stars with proper motions more 150 mas/year were chosen from some modern catalogs CDS database. The number of common HPM stars obtained from results of mutual pairwise crossidentifications between different catalogs is not more than 5% of total volume of compared samples.
There are three main reasons complicated the studies of high proper motion stars:

1) actual proper motions accuracy in Galactic plane is much worse than declared accuracy of individual catalogs;
2) there are no whole celestial sphere catalogs with high accuracy astrometric positions for stars fainter than $16-17^{\mathrm{mag}}$,
3) the different limiting magnitudes and photometric bands create certain complexities by doing catalogs crossmatching.

Acknowledgements. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France and TOPCAT software, data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.

References

Lepine S. et al.: 2005, $A J, \mathbf{1 2 9}, 1483$.
Ivanov G.: 2008, $K F N T, \mathbf{2 4 ,} 480$.
Kislyuk V.S. et al.: 1999, http://cdsarc.u-strasbg.fr/vizbin/Cat?I/261.
Luyten W.J.: 1980, print University of Minnesota, Minneapolis, MN (USA), 16 p .
Salim S. et al.: 2003, AphJ, 582, 1011.
Cutri R.M. et al.:2006, $A J, \mathbf{1 3 1}, 1163$.
Cutri R.M. et al.: 2013, VizieR On-line Data Catalog: II/328.
Roser S. et al.:2010, $A J, \mathbf{1 3 9}, 2440$.
Zacharias N. et al.:2013, $A J, \mathbf{1 4 5}, 44$.
Zacharias N. et al.:2015, $A J, \mathbf{1 5 0}, 101$.
Fedorov P.N. et al.:2011, MNRAS, 416, 403.

