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ABSTRACT. In order to construct a quantum
model of black hole (BH), we introduce a modified de-
scription of classical space-time BH (the Schwarzschild
solution). We develop the Lagrangian formalism of the
vacuum gravitational field in spherically symmetric
space-time, divided on the two regions: R- and T-
regions. Initial metrics in their regions are taken in
the scale-invariant form and depend on a timelike
coordinate in T-region and space-like coordinate in
R-region. We introduce the Hamiltonian and mass
function, which corresponding evolutional coordinate
(t or r) in each of regions. Their Poisson brackets
are proportional Hamiltonian constraint. Further
we construct the quantum operators of Hamilton
and masse. Their commutator are proportional to
the Hamilton operator. System of Wheeler-De Witt
equation and equation on the own values of mass
operator, together with the compatibility condition,
allow to find wave functions in every region. These
wave functions form the common wave function of BH
with the continuous masse spectrum.

Keywords: Black hole, mass function, Hamiltonian
constraint, quantum, mass operator, compatibility
condition.

1. Introduction

Beginning with article Bekenstein (1974) it is
considered that BH has a discrete mass spectrum.
This connect with the idea of quantizing the horizon
area of BH. The last was based on the fact that the
horizon area of a nonextremal BH behaves in a sense
as an adiabatic invariant (Christodoulou, 1970,1971).
In what follows, these ideas developed in numerous
works (See e.g., Mukhanov, 1986; Bekenstein et
all, 1995; Barvinsky et al, 1996, 2001; Hod, 1998;
Khriplovich 1998, 2002, 2004, 2008, etc). On the
other hand, the known approaches (Thiemann at
all, 1993, Kastrup at all, 1994, Kuchař, 1994) to the
canonical quantization of the spherically-symmetric
gravitational field give the continuous mass spectrum.
Formal canonical approach (Cavaglia et al, 1995,1996)
gives an analogical result. These approaches can be
related by postulating periodic boundary conditions in

time for the plane waves and by identifying the period
∆ in real time with the period ∆H = 8πGM/c3 in
Euclidean time (Kastrup, 1996). This yields the mass
spectrum Mn = (1/2)mP

√
n , n = 1, 2, · · · . In the

work Jalalzadeh et al (2011) by using the modifica-
tion of gauge multiplier and with the application of
Wheeler-DeWitt approach the discrete mass spectrum
of BH was also got. In this work we, on the basis
of simple geometrodynamical approach with the use
of DeWitt equation and quantum mass operator, we
construct quantum model of BH with the continuous
mass spectrum.

2. Classic space-time description

2.1. Actions, Lagrangians and supermetrics in the
R- and T-regions

Spherically-symmetric space-time (ST) with the
metric

ds2 = h (r, t)
(
dx0
)2 − g (r, t) dr2 −R2 (r, t) dσ2 , (1)

where dσ2 = dθ2 + sin2 θdα2, has the scalar curvature

(4)R = 2

{
−1− R

g
R,0 (ln (hR)),0 + (2)

+
R

h
R,1 (ln(gR)),1

}
sin θ +

(
divV⃗

)
sin θ .

Here R,0 = ∂R/∂x0, R,1 = ∂R/∂r, divV⃗ is divergence

some vector V⃗ . Action for a free gravitational field

S = − c3

16πκ

∫
V 4

√
−g(4)Rd4x , (3)

after reduction and rejection of the surface term, can
be written as

S =

∫
V 2

L̃dx0dr , (4)

where L̃ – effective Lagrangian

L̃ =
c3R

2κ

{√
h

g
R,r (ln (hR)),r −

√
g

h
R,0 (ln(gR)),0 + 1

}
.

(5)
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Information about the ST structure is contained in
the term (∇R)2 = γabR,aR,b. The surface R(r, x0) =
Rg = const, for which the equality (∇R)2 = 0 holds,
divides ST on two parts: T- and R-regions. Besides,
in T: (∇R)2 > 0 , and in R: (∇R)2 < 0. Taking into
account the Birkhoff theorem, in the R- or T-region can
be chosen such coordinate systems in which metrical
coefficients depend only on space-like r or timelike x0

coordinate, so that:

ds2+ = h+ (r)
(
dx0
)2 − g+ (r) dr2 −R2

+ (r) dσ2 , (6)

ds2− = h−
(
x0
) (

dx0
)2 − g−

(
x0
)
dr2 −R2

−
(
x0
)
dσ2 . (7)

We will define the dimensionless variables ζ±, τ±:

r =
Rg

2
ζ±, x0 =

Rg

2
τ±, rg =

Rg

2
ζg, x0

g =
Rg

2
τg, (8)

where {ζ−, τ−} ∈ T , {ζ+, τ+} ∈ R. Then

ds2+ = h+(ζ+)(dτ−)
2 − g+(ζ+)(dζ+)

2 −R2
+(ζ+)dσ

2 ,

ds2− = h−(τ−)(dτ−)
2 − g−(τ−)(dζ−)

2 −R2
−(τ−)dσ

2 .

By virtue of additivity, the action can be rewritten
as follows

S = S− + S+ =

xg∫
0

L−dτ− +

∞∫
xg

L+dζ+ , (9)

L− =
s0
2

√
h−g−

{
−R−

h−
R−,0 (ln (g−R−)),0 + 1

}
, (10)

L+ =
s0
2

√
h+g+

{
R+

g+
R+,1 (ln (h+R+)),1 + 1

}
, (11)

where s0 = R2
gc

3/4κ. In (9) integration on ζ− and τ+ is
executed in the interval l = ζ−2− ζ−1 = τ+2− τ+1 = 1.
We will enter the new field variables:

h− =
n− + u−

n− − u−
N2

−, g− =
n− − u−

n− + u−
, R− =

Rg

2
(n− + u−) , (12)

h+ =
u+ − n+

u+ + n+
, g+ =

u+ + n+

u+ − n+
N2

+, R+ =
Rg

2
(u+ + n+) . (13)

Then metrics and Lagrangians take the form of

ds2− =
R2

g

4

{
N2

−
n− + u−

n− − u−
dτ2− −

n− − u−

n− + u−
dζ2− −

− (n− + u−)2 dσ2
}
, |u−| < n−, (14)

L− =
s0

2

{
1

N−

(
u2
−,τ− − n2

−,τ−

)
+N−

}
, (15)

ds2+ =
R2

g

4

{
u+ − n+

u+ + n+
dτ2+ −N2

+

u+ + n+

u+ − n+
dζ2+ −

− (u+ + n+)2 dσ2
}
, 0 < n+ < u+ < ∞ , (16)

L+ =
s0

2

{
1

N+

(
u2
+,ζ+

− n2
+,ζ+

)
+N+

}
, (17)

where ,τ± = ∂/∂τ±, ,ζ± = ∂/∂ζ±. The requirement
δS = 0 with respect variations δN leads to constrains

∂L−

∂N−
= 0 =⇒ u2

−,τ− − n2
−,τ− = N2

− , (18)

∂L+

∂N+
= 0 =⇒ u2

+,ζ+ − n2
+,ζ+ = N2

+ . (19)

Except the Lagrange multipliers N from L, we get La-
grangians and actions of the system in both minisuper-
spaces:

L− = s0

√
u2
−,τ−

− n2
−,τ−

, L+ = s0

√
u2
+,ζ+

− n2
+,ζ+

, (20)

S− = s0

ζg∫
0

√
u2
−,τ−

− n2
−,τ−

dτ− = s0

ζg∫
0

dΩ−, (21)

S+ = s0

∞∫
ζg

√
u2
+,ζ+

− n2
+,ζ+

dζ+ = s0

∞∫
ζg

dΩ+. (22)

Here dΩ2
± = du2

± − dn2
± > 0 are metrics on the min-

isuperspaces. Using the gauge condition N = 1, the
constrains can be rewritten in the form

u2
−,τ− − n2

−,τ− = 1, u2
+,ζ+ − n2

+,ζ+ = 1 . (23)

Therewith the initial actions (9) we reduced to the
actions (21) and (22) for the geodesic equations in the
minisuperspaces.

2.2. Hamiltonian and general solution of Einstein
equations

From the Lagrangian (15) where N− = 1, we obtain
the momentums and in T-region

Pu− = s0u−,τ− , Pn− = −s0n−,τ− , (24)

H−(q̇, q) =
s0
2

(
u2
−,τ− − n2

−,τ− − 1
)
, (25)

H−(p, q) =
1

2s0

(
P 2
u− − P 2

n−
)
− s0

2
. (26)

In R-region, by analogy, from (17) we obtain

Pu+ = s0u+,ζ+ , Pn+ = −s0n+,ζ+ , (27)

H+(q
′, q) =

s0
2

(
u2
+,ζ+ − n2

+,ζ+ − 1
)
, (28)

H+(p, q) =
1

2s0

(
P 2
u+
− P 2

n+

)
− s0

2
, (29)

where an evolutional coordinate is the spacelike coor-
dinate ζ+.
Easily to see that momentums Pu± , Pn± are saved,

and Hamiltonians H± are vanished by virtue of the
constrains (23). Hence we obtain the general solutions
of geodesic equations on the minisuperspaces in the R-
and T-regions

u− =
1

s0
Pu−τ− + Cu− , n− = − 1

s0
Pn−τ− + Cn− , (30)

u+ =
1

s0
Pu+ζ+ + Cu+ , n+ = − 1

s0
Pn+ζ+ + Cn+ , (31)

R+ =
r

s0

(
Pu+
− Pn+

)
+

1

2
Rg

(
Cu+

+ Cn+

)
, (32)
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where momentums obey the constrains

P 2
u− − P 2

n− = P 2
u+
− P 2

n+
= s20. (33)

If one substitutes these expression for u± in metrics
(14,16), and taking into account constrains (33), one
gets the general solutions Einstein equations in the R-
and T-regions for the calibrations N = 1.

2.3. Matching conditions

Since the surface R(r, x0) = Rg divides ST on the
T- and R-regions with the metrics (14) and (16), then
there is a problem finding of the matching conditions.
Foremost the first quadratic forms of the sections τ =
ζ = const must be equal.(

ds2−
)
τ−=ζg

=
(
ds2+

)
ζ+=ζg

τ− = ζ+ = ζg, (34)

From here, supposing ζ− = τ+, we obtain

u− = u+, n− = n+ at τ− = ζ+ = ζg.

Now, we consider variations of the action S at N = 1:

δS = δS− + δS+ =

ζg∫
0

δL−dτ− +

∞∫
ζg

δL+dζ+ . (35)

From here, at the fixed boundary conditions we obtain
the motion equations in the T- and R-regions:

u−,τ−τ− = 0, n−,τ−τ− = 0 , (36)

n+,ζ+ζ+ = 0, u+,ζ+ζ+ = 0 . (37)

Let now the fields on the infinity and in the center are
fixed, and on the boundary of the T- and R-regions
they are free. Then using (35) we find

δS = s0
[(
u+,ζ+ − u−,τ−

)
δu−− (38)

−
(
n−,τ− − n+,ζ+

)
δn−

]
τ=ζ=ζg

. (39)

By virtue of the δS = 0 and arbitrariness of value
{δu−, δn−} from here follows the matching conditions
of the derivatives. As a result, we obtain

u− = u+, n− = n+, (40)

u−,τ− = u+,ζ+ , n−,τ− = n+,ζ+ . (41)

2.4. Mass function in the R- and T-regions

From the definition of the mass function

M =
c2

2κ
R
(
1 + γabR,aR,b

)
(42)

we obtain the mass functions in the T- and R-regions
as the functions of the velocities and coordinates:

M− =
c2Rg

4κ

(
n− + u− + (n− − u−)

(
n−,τ− + u−,τ−

)2)
,

(43)

M+ =
c2Rg

4κ

(
u+ + n+ − (u+ − n+)

(
u+,ζ+ + n+,ζ+

)2)
.

(44)
or, as the functions of the momentums and coordi-
nates

M− =
c2Rg

4κ

(
n− + u− +

1

s20
(n− − u−)

(
Pu− − Pn−

)2)
,

(45)

M+ =
c2Rg

4κ

(
u+ + n+ −

1

s20
(u+ − n+)

(
Pu+ − Pn+

)2)
,

(46)

Using the motion equations or constrains, it is easy
to show that the derivatives of the mass functions with
respect to evolutional coordinates τ−, or ζ+ in the T-
or R-fields, respectively, as well as Poisson brackets
between Hamiltonians and mass functions, vanish

(M±),± = {M±, H±} =
2Rg

4κs20

(
Pu± − Pn±

)
H± = 0.

Here (M−),− = ∂M−/∂τ− and (M+),+ = ∂M+/∂ζ+.
Thus, the dynamical quantities M±(p, q) are the
integrals of motion.

2.5. The construction of metrics with the help of
constrains and mass functions

Let us assume that M(q, p) = m. This implies

u± + n± −
1

s20

(
u± − n±

) (
Pu±

− Pn±

)2
=

4κm

c2Rg
.

Taking into account the constrains (33) from here we
find

Pu± = ±
s0
(
u± − 2κm/c2Rg

)√
(u± − 2κm/c2Rg)

2 − (n± − 2κm/c2Rg)
2
, (47)

Pn± = ∓
s0
(
n± − 2κm/c2Rg

)√
(u± − 2κm/c2Rg)

2 − (n± − 2κm/c2Rg)
2
. (48)

Further, from the general solutions (30) and (30), we
obtain u(0) = Cu , n(0) = Cn . Hence

Pu± = ±ϵ2
s0
(
Cu± − 2κm/c2Rg

)√(
Cu± − 2κm/c2Rg

)2 − (Cn± − 2κm/c2Rg

)2 ,
(49)

Pn± = −ϵ2
s0
(
Cn± − 2κm/c2Rg

)√(
Cu± − 2κm/c2Rg

)2 − (Cn± − 2κm/c2Rg

)2 .
(50)
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From the last expression in the (13) it follows that
u+ = 2R+/Rg −n+. Then from the metric (16), using
the (8) and (13), we find that g00 = 1 − n+Rg/R+.
Owing to asymptotic condition g00 = 1−Rg/R+ when
R+ → ∞, where Rg = 2κm/c2, it follows from this
n+ → 1 and s0 = κm2/c. Then from (31) we have
Pn+ = 0, Cn+ = 1 and momentum constrain (33)
gives Pu+ = s0. Here we confined oneself to a positive
value. As a result, the solution (31), takes the form
u+ = ζ+ + Cu+ , n+ = 1. Assumed that that Cu+ = 0
and substituting the obtained solution in (16), where
N+ = 1, we obtain the Schwarzschild solution in a
scale-invariant form

ds2+ =
R2

g

4

{
ζ+ − 1

ζ+ + 1
dτ2+ −

ζ+ + 1

ζ+ − 1
dζ2+ − (ζ+ + 1)2 dσ2

}
, (51)

Finally, using (32), we find R = r+κm/c2. Taking into
account the relations u+ = ζ+, n+ = 1, (8) and (16) we
come to the standard expression for the Schwarzschild
metric.
In order to find the metric in the T-region we use

the solution (30), the matching conditions (40), and
the metric (14). As a result we obtain a trajectory of
the system {u− = τ, n− = 1} in the minisuperspace
and the metric of ST in the scale-invariant form

ds2− =
R2

g

4

{
1 + τ−

1− τ−
dτ2− −

1− τ−

1 + τ−
dζ2− − (1 + τ−)2 dσ2

}
.

(52)

3. Quantum description

3.1. Quantization in the T-region

When choosing a method of quantization by the for-
mula Ĥ ∼ ∆ + qR (choice of the order for operators)
we can use the usual covariant quantization, assum-
ing Ĥ ∼ ∆, because minisuperspace is flat. With this
in mind, we have transformed the classical action and
the metric of minisuperspace to the maximum simple
Lorentzian form. Here evolution variable is the dimen-
sionless timelike coordinate τ , the generalized coordi-
nates and velocities are {u−, n−} and {u−,τ− , n−,τ−},
the momentums are {Pu−, Pn−}. We define the mo-
mentum operators by the standard formulae

P̂n− = −ih̄
∂

∂n−
, P̂u− = −ih̄

∂

∂u−
. (53)

Then the Hamiltonian has the form

Ĥ− = − h̄2c

2κm2

(
∂2

∂u2
−
− ∂2

∂n2
−

)
− κm2

2c
. (54)

The Hamilton constrain leads to the DeWitt equation

Ĥ−Ψ− = 0⇒
(

∂2

∂u2
−
− ∂2

∂n2
−

)
Ψ− + µ4Ψ− = 0 , (55)

where µ =
√

s0/h̄ = m/mpl, mpl =
√

ch̄/κ. The
mass function in the T-region corresponds to the mass
operator

M̂− =
m

2

(
u− + n− +

u− − n−

µ4

(
∂

∂u−
− ∂

∂n−

)2
)

.

(56)

Further, we introduce the light coordinates in the min-
isuperspace of the T-region

ξ− = u− − n− , η− = u− + n− . (57)

Then the Hamiltonian, DeWitt equation and mass op-
erator take the forms

Ĥ− = −2ch̄2

κm2

∂2

∂ξ−∂η−
− κm2

2c
, (58)

∂2Ψ−

∂ξ−∂η−
+

µ4

4
Ψ− = 0 , (59)

M̂− =
m

2

(
η− +

4

µ4
ξ−

∂2

∂ξ2−

)
. (60)

We consider the operator commutator[
Ĥ−M̂

]
Ψ− =

4

µ4
Ĥ−

∂Ψ−

∂ξ−
=

4

µ4

∂

∂ξ−

(
Ĥ−Ψ−

)
,

(61)
We see that commutator vanishes on constrain
Ĥ−Ψ− = 0. Therefore, the eigenvalue problem of the
mass operator: M̂−Ψ− = mΨ− is necessary to solve
together with the finding of the wave functions, satis-
fying DeWitt equation. Thus the need to solve together
a system of equations

∂2Ψ−

∂ξ−∂η−
= −µ4

4
Ψ− , µ4 =

m4

m4
pl

, (62)

∂2Ψ−

∂ξ2−
= −µ4

4

(
η− − 2

ξ−

)
Ψ− . (63)

The compatibility condition leads to the equation

ξ−
∂Ψ−

∂ξ−
+ (2− η−)

∂Ψ−

∂η−
= Ψ− . (64)

Hence we find the Ψ− = ξ−G(Z), where G(Z) is the
arbitrary function of argument Z = ξ−(2 − η−). Sub-
stituting the Ψ− into DeWitt equation (62), we get

Z
d2G

dZ2
+ 2

dG

dZ
− µ4

4
G = 0. (65)

Its general solution

G =
1

√
Z

{
C1J1

(√
−µ4Z

)
+ C2Y1

(√
−µ4Z

)}
. (66)

where J1(x) and Y1(x) are the Bessel functions of the
first and second kind. Thus, the common wave function
of the Hamiltonian and the mass operator takes the
form

Ψ− =
ξ−√
Z−

{
C1J1

(
µ2
√

−Z−

)
+ C2Y1

(
µ2
√

−Z−

)}
.

(67)

Returning to the variables {u−, n−}, we find

Ψ− =
u−−n−√

(n−−1)2−(u−−1)2
·

·
{
C1J1

(
µ2
√

(u− − 1)2 − (n− − 1)2
)
+

+C2Y1

(
µ2
√

(u− − 1)2 − (n− − 1)2
)}

.
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The minisuperspace metric dΩ2
− = du2

− − dn2
− > 0

in the T-region gives the physically admissible timelike
directions (u− − 1)2 − (n− − 1)2 > 0 of the vector
ξa− = u− − 1, n− − 1. For the regularity of the wave
function, on the light-cone (u− − 1)2 − (n− − 1)2 = 0
in the minisuperspace, we suppose that C2 = 0. As
a result, the wave function of the black hole with the
mass m in T-region takes the form:

Ψ− =
C−(u− − n−)J1

(
µ2
√

(u− − 1)2 − (n− − 1)2
)

√
(n− − 1)2 − (u− − 1)2

. (68)

The found wave function depends on the square
two-dimensional vector ξa− = {u− − 1, n− − 1} with
initial point {1, 1}. In the physical region the wave
function oscillates and decreases. Outside the light
cone, it decreases monotonically

3.2. Quantization in the R-region

Here the formal evolution variable is the dimension-
less spacelike coordinate ζ, the generalized coordinates
and velocities are {n+, u+}

{
u+,ζ+ , n+,ζ+

}
, the mo-

mentums are {Pu+ , Pn+}. We define formally momen-
tum operators by the formulae

P̂u+ = −ih̄ ∂

∂u+
, P̂n+ = −ih̄ ∂

∂n+
. (69)

The Hamiltonian has the form

Ĥ+ = − ch̄2

2κm2

(
∂2

∂u2
+

− ∂2

∂n2
+

)
− κm2

2c
, (70)

The Hamilton constrain H+ = 0 leads to the DeWitt
equation:

Ĥ+Ψ+ = 0⇒
(

∂2

∂u2
+

− ∂2

∂n2
+

)
Ψ+ + µ4Ψ+ = 0. (71)

The mass function corresponds to the mass operator

M̂+ =
m

2

(
u+ + n+ +

u+ − n+

µ4

(
∂

∂u+
− ∂

∂n+

)2
)
(72)

We introduce the light coordinates in the minisuper-
space of the R-region

ξ+ = n+ − u+, η+ = n+ + u+ . (73)

Then the Hamiltonian, DeWitt equation and mass op-
erator take the forms

Ĥ+Ψ+ =
2ch̄2

κm2

∂2Ψ+

∂η+∂ξ+
− κm2

2c
Ψ+ , (74)

∂2Ψ+

∂η+∂ξ+
− µ4

4
Ψ+ = 0 . (75)

M̂+ =
m

2

(
η+ −

4

µ4
ξ+

∂2

∂ξ2+

)
. (76)

The commutator of the Hamilton and the mass opera-
tor[

Ĥ+M̂
]
Ψ+ =

4

µ4
Ĥ+

∂Ψ+

∂ξ+
=

4

µ4

∂

∂ξ+

(
Ĥ+Ψ+

)
. (77)

vanishes on the constrain Ĥ+Ψ+ = 0. Therefore, the
eigenvalue problem of the mass operator: M̂+Ψ+ =
mΨ+ should be solved together with the finding of the
wave functions, satisfying DeWitt equation. So neces-
sary to solve together a system of equations

∂2Ψ+

∂η+∂ξ+
=

µ4

4
Ψ+, (78)

∂2Ψ+

∂ξ2+
=

µ4

4

(
η+ − 2

ξ+

)
Ψ+. (79)

The compatibility condition leads to the equation

ξ+
∂Ψ+

∂ξ+
+ (2− η+)

∂Ψ+

∂η+
= Ψ+, (80)

From here we find that Ψ+ = ξ+G+(Z̃), where
Z̃ = ξ+(2 − η+). Substituting this relation into De-
Witt equation we derive the equation for the function
G+(Z̃):

Z̃
d2G+

dZ̃2
+ 2

dG+

dZ̃
+

µ4

4
G+ = 0. (81)

Its general solution taking into account the formula
Ψ+ = ξ+G+(Z̃) leads to the wave function of the state
with a certain mass

Ψ+ =
ξ+√
Z̃

{
C1J1

(
µ2
√
Z̃
)
+ C2Y1

(
µ2
√
Z̃
)}

. (82)

Take into consideration that Z̃ = (u+ − 1)2 − (n+ −
1)2, from the regularity condition of the wave function
on the light cone, we get C2 = 0. As a result, wave
function of BH with the mass m in the R-region takes
the form:

Ψ+ =
C+(u+ − n+)J1(µ

2
√
(u+ − 1)2 − (n+ − 1)2)√

(u+ − 1)2 − (n+ − 1)2
.

(83)
The found wave function describes the standing
decreasing spherical wave in the minisuperspace of the
R-region.

4. Conclusion

The resulting wave function (68), (83) satisfy the
matching conditions (40). Furthermore in full minisu-
perspace R- and T- regions, we can enter the general
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smooth coordinates by the formulae

u =

{
u− = η−, −1 < η− < 1
u+ = ζ+, 1 < ζ+ <∞ ,

n =

{
n− = 1, −1 < η− < 1
n+ = 1, 1 < ζ+ <∞

}
= 1.

Herewith the common wave function of the BH for the
whole space V 4 = T ∪R has the form

Ψ =
A(u− n)√

(n− 1)2 − (u− 1)2
J1(µ

2
√

(u− 1)2 − (n− 1)2) . (84)

It corresponds to the state with a certain mass
m = µmpl. The mass spectrum obtained continuously.
This is in agreement c other works (See e.g., Cavaglia‘
at all, 1995), where other methods are used. Interest-
ing to note that formal quantization in R-region with
spacelike evolution coordinate gives the same wave
function that and in the T-region with the timelike
evolution coordinate.
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