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ABSTRACT. Currently, in the field of computer 
processing, there are difficulties. When processing 
astrophysical experimental data, the difficulties are 
connected, on the one hand, with a large amount of 
information that requires processing, and, on the other 
hand, with the technical capabilities of computers. The use 
of analytical methods can significantly reduce information 
processing time. The information that is entered is 
recorded in an analytical form, more convenient for 
processing. Information is processed analytically (Kotvyt-
skiy & Bronza, 2016), and not by methods of the Ray 
Tracing type. Some results were obtained strictly analyti-
cally, and they do not need further computer processing 
(Kotvytskiy et al., 2016). The goal of this paper is to 
analyze images in N-point gravitational lenses by: 

– reduction of research of an arbitrary source to the 
study of a circular source; 

– reduction of research of a circular source in an N-
point gravitational line to its study in the Schwarzschild 
lens and other few-point lenses; 

– analytical study of a circular source in the 
Schwarzschild lens and other few-point gravity lenses; 

– research of the place of the Schwarzschild lens, in the 
set of N - point gravitational lenses. 

Using the methods of algebraic geometry, algebraic to-
pology and the theory of functions, we have prepared a 
problem for computer modeling: finding images of arbi-
trary sources in an N-point gravitational lens. We re-
searched the images of a circular source in the 
Schwarzschild lens and proved that the study of images of 
any other sources is combinatorial reduced to this case. 

АБСТРАКТ. В теперішній час в області обробки 
комп'ютерної інформації, спостерігаються труднощі. 
При обробці астрофізичних експериментальних даних, 
труднощі пов'язані з одного боку з великою кількістю 
інформації, яка потребує обробки, а з іншого боку з 
технічними можливостями комп'ютерів. Застосування 
аналітичних методів дозволяє значно скоротити час 
обробки інформації. Інформація, яка вводиться, запи-
сується в аналітичному вигляді, більш зручному для 
обробки. Інформація обробляється аналітично (Kot-
vytskiy & Bronza, 2016), а не методами типу Ray 

Tracing. Деякі результати вдалося отримати строго 
аналітично, і вони не потребують подальшої комп'ю-
терної обробки (Kotvytskiy et al., 2016). 

Метою даної роботи є аналітичне дослідження зо-
бражень в N-точкових гравітаційних лінзах шляхом: 

– редукції досліджень довільного джерела до ви-
вчення кругового джерела; 

– редукції досліджень кругового джерела в N- точ-
ковій гравітаційній лінзі до його дослідження в лінзі 
Шварцшильда та інших мало-точкових лінзах; 

– аналітичного дослідження кругового джерела в 
лінзі Шварцшильда і інших мало - точкових гравіта-
ційних лінзах; 

– дослідження місця лінзи Шварцшильда, в множи-
ні N - точкових гравітаційних лінз. 

Методами алгебраїчної геометрії, алгебраїчної то-
пології та геометричної теорії функцій ми підготували 
задачу знаходження зображень довільних джерел в N- 
точкових гравітаційних лінзах до комп'ютерного мо-
делювання. Аналітично досліджені зображення круго-
вого джерела в лінзі Шварцшильда і деяких інших 
мало-точкових гравітаційних лінзах. Показано, що 
дослідження зображень будь-яких інших джерел ком-
бінаторно зводиться до цього випадку. 

Keywords: Gravitational lens, algebraic geometry, phases 
of images. 

 
1. Introduction 
 
Let 2

XR  and 2
YR  be vector spaces. It is known, (Kot-

vytskiy & Bronza, 2017), (Kotvytskiy et al., 2017) that 
N  - point gravitational lens sets a single-valued mapping  

2 2: ( \ )X YL R R  ,                    (1) 

were  1, 2,...,il i N    - set of radius - vectors il


 
point masses. The mapping L  can be written in the coor-
dinate form (Weinberg, 2008):  
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were  21 x,xx  ,  21 y,yy  ,  iii b,al 


, and im  nor-
malized, dimensionless point masses satisfying  the rela-
tion 1 im . We add the vector spaces 2

XR  and 2
YR  to 

affine ones. We will define orthonormal bases in them. 
For the unit of rationing, we take the Einstein-Chvolson 
radius. The resulting affine spaces 2

XR  and 2
YR  are called 

the lens plane and the source plane, respectively. For some 
researches, they are combined and called the picture 
plane. The mapping 1L  inverse to (1) is, in general, mul-
tivalued (Kotvytskiy, et al., 2017), (Kotvytskiy, et al., 
2017). It can, naturally, be continued from  2 \XR   to all 

2
XR  (we will leave the same notation behind the contin-

ued mapping), i.e. 

1 2 2: Y XL R R                                (3) 

Some authors call this mapping as a lens mapping, see, for 
example, (Schneider et al., 1999). A special case of the N – 
point gravitational lens is the Schwarzschild lens, 
(Weinberg, 2008), (Schneider et al., 1999), which is deter-
mined by the condition 1 11, 0, 0N a b   , and 1m  . 

From the algebraic point of view, system (2) is a sys-
tem of two rational equations, which are given over the 
field of real numbers.  System (2) can also be considered 
over the field of complex numbers.  If the coordinates of 
the source are fixed, the set of real solutions of the system 
is the set of its images in the lens. 
     In this note, system (2) is researched by methods of 
algebraic geometry, mathematical analysis and the theory 
of functions. This allows us to obtain analytical expres-
sions for describing sources and images and to construct 
efficient algorithms for solving problems using computer 
algebra methods. In some cases, it is possible to accurately 
obtain an analytical solution. 
 

2.  Description of sources by the analytical method 
 

     In this article, we assume that the source is flat and 
located in the plane 2

YR . Sources can be classified accord-
ing to various criteria, for example: physical, homogene-
ous and non-homogeneous; topological, on: 
      – zero-dimensional, consisting of a finite number of 
points; 
    – one-dimensional, consisting of a finite number of 
lines; 
    – two-dimensional, consisting of a finite number of 
two-dimensional regions; 

– combined. 
   Due to the physical nature of the problem, we restrict 
ourselves to considering sources with a finite number of 
connected components, and we assume that any compo-

nent or: 
– point; 
– arc piecewise smooth curve; 
– of course – a connected domain, the boundary of 

which consists of a finite number of arcs of smooth 
curves. 

From the definition of mapping (1) by the system of 
equations (2), it follows that the source image is the union 
of the images of its connected components. It can also be 
assumed that the boundary of each connected component 
(a multiply connected domain) consists of a finite set of 
closed Jordan curves. From here follows: the image of a 
multiply-connected region can be represented as a finite 
combination of simply-connected regions. This combina-
torial problem is effectively solvable in the framework of 
algebraic topology. The reduction of research of an arbi-
trary source to the study of a circular source provides  

Riemann's theorem. For any simply connected domain 
G  (the boundary of the region has at least two points), 
there is analytic function ( )f z   in the domain G , 

which conformally maps the G  to the unit circle 1z  . In 
addition, if a is a certain point of the G  domain, then the 
function ( )f z   is uniquely determined by the condi-
tions: ( ) 0, ( ) 0f a f a  . 

Thus, at the first stage, it suffices to study the image of 
a point, a Jordan curve and a circle. 

Note also that the trajectory of a point source, also, can 
be considered as the union of Jordan curves. When con-
sidering inhomogeneous sources, the functions by which 
they are given can be approximated by step functions 
given by level lines. Due to the physical nature of the 
problem, each level line can also be considered as a Jor-
dan curve, or their union. 
     To set: 
     – point source is enough to set the coordinates of the 
point; 
     – an extended one-dimensional source, it suffices to 
specify a Jordan curve (for our purposes, for example, as 
an irreducible polynomial in two 1y , 2y  variables, or as a 
parametric curve 1 1 2 2( ), ( )y y t y y t  ; 

– an extended two-dimensional source, set, its bounda-
ries, as Jordan curves, and the region itself, as a system of 
inequalities relative to its boundaries. 

 
3. Asymptotic behaviour of a mapping 
 
The direct task of the theory of gravitational lensing is 

the task of constructing images from a given source. 
We make some assumptions regarding the source. We 

will assume that the source is homogeneous, flat and has a 
clear boundary. In topological terms, a source is a con-
nected, finitely connected domain whose boundary is rec-
tifiable, or in general, is an algebraic set (Lavrentiev & 
Shabat, 1973), (Gurvits & Kurant, 1968). The image of an 
S  source in a lens, in topological terms, is an open set, 
generally speaking, consisting of several connected com-
ponents.  

We define some concepts necessary for further presen-
tation. 
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The diameter of the S  source is called the diameter of 
the minimum circle to which it belongs, and the center of 
the source S  is the center SO of this circle. We say that 

the source of S  is small, if its diameter Sd  is signifi-
cantly less than the unit 1Sd  , and deleted (located far 

away) if the module SO


of the radius-vector SO


 is sig-

nificantly greater than one, i.e. 1SO 


. Similarly, we 

define the concept: the diameter and canter of the con-
nected components of the image, and the remote image. 

Occurs 
Theorem 1. Let the source S  and its images be viewed 

in the picture plane. If the source is small and deleted, 
then its image has: 

– remote component of connectivity 1S , such that  

1S SO O ; 

– each point 1S , with SO  , tends to its image in 

1S ; 

– restriction of the mapping L  to 1S  is a bijection of 

1S  to S . 
 First we prove the lemma  
Lemma 2. The remote image of a remote point source 

in N -point gravitational lens tends to its remote image in 
the Schwarzschild lens. 

Proof. Let points   2,i i Xa b R  and 2 2
1 2x x   . Let 

  . Where we have: 

   
 1

2 2
1 2

1
1 1 2 2

1 1 2

i

i i

N
x a

i x a x b
i

xx m x o
x x



  


   
 .     (4) 

A similar relation holds for the right side of the second 
equation of system (2). 

For system (2), with   , we have: 

   

   
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1 2
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1 1 2 21 1

1 1 2
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x x

xy xy x m
x x


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



  


    
  
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 
 




   (5) 

Thus, when the image is removed from the origin of coor-
dinates in an N -point lens, it differs little from the images 
in the Schwarzschild lens. 

But for the Schwarzschild lens, it is known that the 
points of the remote source are close to the points of the 
remote component of the image. Indeed, if 2 2

1 2y y  , 
then:  

1
1 1 12 2

1 2

1 41
02
y

x y y x
y y

  
         

,         (6) 

thus, the abscissa 1S  tends to abscissa S . The same is 
true for ordinates. 

The proof is complete.  

Proof of Theorem 1. 
We show that the points of the 1S  (the remote compo-

nent of the image of the source of the S  in the Schwarz-

schild lens) tend to their images, if SO  . For the 
Schwarzschild lens we have:  

   2 2 2 2
1 1 2 2 1 21/ 1/x y x y x x       . 

 
In addition, 

from SO r   , and therefore 

   2 2
1 1 2 2 1/ 0x y x y      . 

The restriction of the mapping L  to 1S  is a bijection 

of 1S  to S . Indeed, a point from S  has two pre-images, 

one of which belongs to the remote image 1S , and the 
second is in the unit circle. Considering the lemma, we 
have: the assertions of Theorem 1 are true. 

 
4. Images of a circular source in the  

Schwarzschild lens 
 
The Riemann theorem and Theorem 1 show the need to 

investigate images of a point and circular source in the 
Schwarzschild lens. 

It is known that each point source located not at the 
origin of coordinates has two points (further conjugate) 
images in the Schwarzschild lens, one of which is in the 
unit circle and the other outside it. 

Occurs 
Theorem 2. If 1 2g ,g  is the coordinates of one of the 

conjugate images in the Schwarzschild lens, then the co-
ordinates of the second image are 

   1 12 2 2 2
1 1 2 2 1 2g g g , g g g

 
    . 

Proof. Let's substitute the coordinates of each of the 
images into the lens equation. Both images have the same 
source. 

The theorem is proved. 
Corollary of Theorem 2. Let the source be small, sim-

ply connected, and not containing the origin. Then, in the 
Schwarzschild lens, it has two images. The points of the 
images are conjugate and their coordinates satisfy Theo-
rem 2. We will call such images conjugate. 

 Let us turn to the study of images of a circular source. 
Let the source be a disk ( )D D a  of radius   with the 
canter at the point ( ,0)a , and its boundary D : 

1

2 2
2 1

  
( )

y t

y t a




   
.                   (7) 

We substitute (7) into the system of equations that de-
scribes the Schwarzschild lens and exclude t . We have: 

   2 2 2 2 2 2
1 2 1 1 2 1

2 2 2
21 12 ( )( ) 0ax x x x xax x        (8) 

We turn in (8) to the polar coordinates, we have: 

   22 222 21 1 co ( ) 0s2a ar r r r     .  (9) 
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We research the equation (8) and (9), for which we 
consider special cases: 

 I) 0a  ;  II) a  ;  III) a  ;  IV) a  . 
Case I).  
From (9) we have: the image of the disk D  under the 

mapping 1L   is the ring k . The ring is formed by cir-
cles:  

   2 2
1 24 / 2, 4 / 2r r         .  (10) 

The radii of the circles are reciprocal, i.e. 1 21 /r r . 
Case II).  
If a a     . Consider the case of a  . We 

substitute a   into (8). We have: the equation is divided 
into two: 

2 2
1 2 1xx   , 2

2
2

1
2( 1) xx                (11) 

Equations (11) are equations of circles. Therefore, the 
image of the  2 2 2

1 2 1 2( , )D y y y y     disk, when 

displaying 1 2 2: Y XL R R  , will be two circular wells. The 
wells are formed by circles (11), are conjugate and have 
the following areas: 

2(1 )
2IS arcctg       ,    (12) 

2 2(1 )
2IIS arcctg               (13) 

Similarly, we consider the case of a   . 
Case III). a  . 
The value of the polar radius 0r  . From (9) we have:  

if a   we have two ovals, which are one in the other 
and are the boundary of a doubly connected domain ho-
meomorphisms to the 1K  ring. 

Internal and external ovals: 


 

2 2 2

2
2 2 2

1 cos sin
2

cos sin 4

r a a

a a

  

  

  


    



 
,          (14) 

The area of this 1K  is 

0

( )( )S r r r r d


      .                (15) 

Case IV). a  . 
If a  , then we have: two closed, disjoint, conjugate 

curves (ovals) . The curves are one outside the other and 
are the boundaries of simply connected regions. Each of 
the areas is homeomorphism to a disk. Curves are defined 
if 2 2 2sin 0a   . Where do we get:  

arcsin arcsin
a a
 

   , arcsin arcsin
a a
 

      .  (16) 

The ovals in the right and left half-planes are given for 
constraints (16) by the equation (14). 

The far (near) arc of the right oval is associated with 
the far (near) arc of the left oval. The area of the area 
bounded by the right oval: 

arcsin

0

( )( )
a

S r r r r d



      .             (17) 

 
5. Classification of circular images source in the 

Schwarzschild lens  
 
Without loss of generality, we can assume that the cen-

ter of the circular source is on the x-axis, and the radius of 
the source is small. 

For images of a circular source, a classification theo-
rem holds in the Schwarzschild lens. 

Theorem 3. Images of a circular source in the 
Schwarzschild lens belong to only one of the sets defined 
below (we will call the sets phases, the circular source and 
the image of the circular source will be depicted in the 
picture plane). 

Let the radius of the circular source  , and the canter 
is at point ( ,0)a . 

 Phases and parameters by which they are defined: 

phase «-7»: 
1

2
a 


  ; phase «-6»: 

1
2

a 


  ; 

phase «-5»:
1 1

2
a 


     ; phase «-4»: 

1a    ; phase «-3»: 1 a     ; phase «-2»: 
a   ;  phase «-1»: 0a   ;  phase «0»: 0a  ; 
phase «1»: 0 a   ; phase «2»: a  ; phase 
«3»: 1a    ; phase «4»: 1a   ;  phase «5»: 

11
2

a 


    ; phase «6»: 
1

2
a 


  ; phase 

«7»: 
1

2
a 


  .  

Corollary 1, Theorem 3. The classification of phases, 
in Theorem 3, is linear, has 15 phases, including 7 point 
and 8 intervals. The phases are symmetrical with respect 
to the central phase - the Einstein ring. Each of the phases 
is completely determined by the values of two parameters: 
the coordinates of the canter of the circular source, and its 
radius. Parameters are phase invariants. 

Corollary 2, Theorem 3. Any small simply connected 
source containing the origin has a Schwarzschild lens,  a 
single doubly connected image that contains a unit circle. 
The points of the image outside and inside the unit circle 
are conjugate and their coordinates satisfy  Theorem 2. 

 
6. Research of images in a N  – point gravitational 

lens 
 
The Schwarzschild Lens holds a special place in the set 

of point gravitational lenses:  
–  the point source has a long image - the Einstein ring; 
–  to it reduce other H-point gravitational lenses. 
For a sufficiently complete study it is necessary to 

study the typical representatives of the set N –  point grav-
itational lenses: binary, 3-ary, etc. Also interesting are 
lenses with symmetries. The equation for specifying im-
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ages of a circular source in an N-point gravitational lens, 
generally follows from (2) and (7). 

Let the source be a disk ( )D D a   of radius   
centered at point ( , )a b  and its boundary D  is given by 
parametric equations. Then the borders of the images are 
described by the equation: 

   

   

1
2 2

1 2

2
2 2

1 2

2

1
1

2
2

2
1

i

i i

i i

i i

N
x a

i x a x b
i

N
x a b

i x a x b
i

x m a

x m b 



  




  


 
   

 

 
    
 




.  (18) 

Equation (18) is sufficient for computer modeling of 
images in small - point lenses. Thus, for the direct prob-
lem there is a constructive, quasi-analytical solution. For 
special cases, it is possible to solve the direct problem 
analytically. 

Example. 
Let the point source is on axis 1OY , that is 2 0y  . Bi-

nary symmetric gravitational lens with masses 

1 21/ 2, 1/ 2m m  . For any real 1y , there are always 
three real solutions that are determined by the equation 

 

 3 2 2
11 1

2
1 1 1 0x x b xy yb     .          (19) 

In addition, with some ratios of parameters two more 
solutions can be implemented. For example, if 1 0y   and 

1b  , then we have the following, additional, pair of so-

lutions  20, 1 bx   


. 

 

7. Conclusion 
 
In this paper, in the proof of the theorems, topological 

methods and the Riemann theorem on conformal equiva-
lence of simply connected domains were used. It was 
proved that the study of images of any sources combinato-
rial reduces to the study of images of a circular source. It 
has been analytically proven that the Schwarzschild lens is 
a “limit” lens in the family of N-point gravitational lenses. 
The features of the Schwarzschild lens as a limiting lens are 
investigated, the classification of its images is proposed. 
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