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ABSTRACT. We study some classical and quantum
aspects of the con�guration space for a spherically-
symmetric (SS) system of gravitational and electro-
magnetic �elds. Note that this �elds con�gurations,
which are stationary respect to external observer, have
regions of space-time (S-T) with dynamic behavior.
This means that in these regions there exists an
evolution of the S-T geometry in time, which is
responsible for both classical and quantum mechanical
properties of the model. From the standard action,
we construct the reduced action and conserved total
mass and charge. In view of a Hamiltonian constraint
the non-dynamic degree of freedom from the action
is excluded. This leads to the action in the minisu-
perspace. Therefore, the classical investigation stage
of the Einstein equations solutions reduces to the
study of solutions of the Einstein-Hamilton-Jacobi
equation in the minisuperspace. It turns out that
minisuperspace is �at therefore solutions of the
Einstein equations correspond to a pencil of lines in
the minisuperspace. Their intersections with the light
cone of the minisuperspace correspond to the event
horizons in the S-T of the charged BH. The consider-
ation of the quantum aspects is formally reduced to
the quantization of a particle in a three-dimensional
pseudo-Euclidean space. Using the compatibility
condition of the DeWitt and the eigenvalue equations
for the operators of mass and charge the con�guration
wave function is constructed. Thus, we obtain a model
of a charged BH with a continuous spectrum of masses
and charge.

Keywords: spherical-symmetric con�gurations,
minisuperspace, Hamilton operator, mass and charge
operators, compatibility condition

ÀÁÑÒÐÀÊÒ. Äîñëiäæóþòüñÿ äåÿêi êëàñè÷íi
i êâàíòîâi àñïåêòè ôiçèêè i ãåîìåòði¨
ìiíiñóïåðïðîñòîðó ñôåðè÷íî-ñèìåòðè÷íî¨ ñèñòåìè
ãðàâiòàöiéíîãî òà åëåêòðîìàãíiòíîãî ïîëiâ.
Âiäçíà÷èìî, ùî òàêi êëàñè÷íi êîíôiãóðàöi¨,
ÿêi ¹ ñòàöiîíàðíèìè ç òî÷êè çîðó çîâíiøíüîãî

ñïîñòåðiãà÷à, ìàþòü ïåâíi îáëàñòi ïðîñòîðó-÷àñó
(Ï×) ç äèíàìi÷íèì ïîâåäiíêîþ (Ò-îáëàñòi). Öå
îçíà÷à¹, ùî â öèõ îáëàñòÿõ iñíó¹ åâîëþöiÿ ãåîìåòði¨
Ï× â ÷àñi, ÿêà âiäïîâiäà¹, ÿê çà êëàñè÷íi, òàê
i çà êâàíòîâî-ìåõàíi÷íi âëàñòèâîñòi ìîäåëi. Çi
ñòàíäàðòíî¨ äi¨ áóäó¹òüñÿ äiÿ äëÿ çàçíà÷åíî¨
ñèñòåìè ïîëiâ â Ò-îáëàñòi, ââîäÿòüñÿ ïîâíà ìàñà
i çàðÿä ñèñòåìè, ÿêi çáåðiãàþòüñÿ. Çà äîïîìîãó
ãàìiëüòîíîâî¨ â'ÿçi, ç îòðèìàíî¨ ñêîðî÷åíî¨ äi¨
âèêëþ÷à¹òüñÿ íåäèíàìi÷íà ñòóïiíü âiëüíîñòi.
Öå ïðèçâîäèòü äî äi¨ â êîíôiãóðàöiéíîìó
ïðîñòîði (ìiíiñóïåðïðîñòîði). Âèÿâëÿ¹òüñÿ, ùî
ðiâíÿííÿ ãåîäåçè÷íèõ â ìiíiñóïåðïðîñòîði ðàçîì
ç â'ÿççþ åêâiâàëåíòíi ðiâíÿííÿì Åéíøòåéíà.
Òîìó, êëàñè÷íèé åòàï äîñëiäæåííÿ ðiøåííÿ
ðiâíÿíü Åéíøòåéíà çâîäèòüñÿ äî äîñëiäæåííÿ
ðîçâ'ÿçêiâ ðiâíÿííÿ Åéíøòåéíà-Ãàìiëüòîíà-
ßêîái â ìiíiñóïåðïðîñòîði. Âèÿâëÿ¹òüñÿ, ùî
ìiíiñóïåðïðîñòîð ¹ ïëîñêèì, òîìó ðîçâ'ÿçêàì
ðiâíÿíü Åéíøòåéíà âiäïîâiäà¹ ïó÷îê ïðÿìèõ â
ìiíiñóïåðïðîñòîði. �õ ïåðåòèí çi ñâiòëîâèì êîíóñîì
ìiíiñóïåðïðîñòîðó âiäïîâiäàþòü ãîðèçîíòàì ïîäié
â Ï× çàðÿäæåíî¨ ×Ä. Ïåðåòèí öèõ ïðÿìèõ
ó ïó÷êó âiäïîâiäà¹ öåíòðàëüíié ñèíãóëÿðíîñòi
Ï×. Ðîçãëÿä êâàíòîâèõ àñïåêòiâ ñèñòåìè
ôîðìàëüíî çâîäèòüñÿ äî êâàíòóâàííÿ âiëüíî¨
÷àñòèíêè â òðèâèìiðíîìó ïñåâäîåâêëiäîâîìó
ìiíiñóïåðïðîñòîði. Âèêîðèñòîâóþ÷è óìîâó
ñóìiñíîñòi ðiâíÿíü Äåâiòòà i ïðîáëåìè íà âëàñíi
çíà÷åííÿ êâàíòîâèõ îïåðàòîðiâ ìàñè i çàðÿäó,
áóäó¹òüñÿ õâèëüîâà ôóíêöiÿ ñôåðè÷íî-ñèìåòðè÷íî¨
êîíôiãóðàöi¨ ãðàâiòàöiéíîãî i åëåêòðîìàãíiòíîãî
ïîëiâ. Òàêèì ÷èíîì, ìè îòðèìó¹ìî ìîäåëü
çàðÿäæåíî¨ ÷îðíî¨ äiðè iç áåçïåðåðâíèì ñïåêòðîì
ìàñ i çàðÿäó.

Êëþ÷îâi ñëîâà: ñôåðè÷íî-ñèìåòðè÷íi
êîíôiãóðàöi¨, êîíôiãóðàöiéíèé ïðîñòið, îïåðàòîð
Ãàìiëüòîíà, îïåðàòîðè ìàñè i çàðÿäó, óìîâà
ñóìiñíîñòi
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1. Introduction

It is known that the classical and quantum aspects
of the behavior of the gravitational �eld is determined
by a superspace metric so that superspace is the ac-
tion arena of classical and quantum geometrodynamics.
By studying the superspace geometry we can obtain
important information about the classical and quan-
tum manifestations of the dynamical system under con-
sideration. However, the study of superspace in the
general case meets with insurmountable mathemati-
cal di�culties (Anderson 2015, Giulini 2009). There-
fore, reduced models are widely used, among which
spherically symmetric (SS) con�gurations are popular
and simplest models used for studying the problems of
quantum gravity in a simpler setting. The general ge-
ometrodynamics approach to studying of the SS grav-
itational �eld of the black hole (BH) was developed in
work of Kucha�r 1994, the case of the electromagnetic
and gravitational �elds con�guration of the charged
BH, was considered by Louko et al. 1996 and Naka-
mura et al. 1993.
The present work is devoted to studying of the min-

isuperspace of the electromagnetic and gravitational
�elds SS con�gurations and the search for a correspon-
dence between space-time and the minisuperspace,
with the subsequent transition to quantization. We
consider the class of SS con�gurations with diagonal S-
T metrics. The model is based on the observation that
the classical SS con�gurations of the electromagnetic
and gravitational �elds, which are stationary from the
point of view of an external observer, have certain
S-T regions (T-regions) with dynamic behavior. This
means that in these regions there is an evolution of
the S-T geometry over time, which is responsible for
the quantum mechanical properties of the considered
charged BH model.

2. Classical description of the spherically-

symmetric con�guration of the gravitational

and electromagnetic �elds

Consider the SS space-time M (4) with the metric

ds2 = gµνdx
µdxν = γabdx

adxb −R2dσ2 . (1)

Here dσ2 = dθ2 + sin2 θdα2 , R = R(xa), γab =
γab(x

a) � 2D metric tensor,
√
−g =

√
−γR2 sin θ, ãäå

g = det |gµν |, γ = det |γab|, µ, ν = 0, 1, 2, 3 ; a, b = 0, 1.
The action for a system of gravitational and electro-
magnetic �elds has the form

S = − 1

16πc

∫ (
c4

κ
(4)R+ FµνFµν

)√
−gd4x , (2)

where (4)R is the scalar curvature, Fµν = Aν,µ −Aµ,ν

is the electromagnetic �eld tensor, Aµ = {Aa, 0, 0} is
vector potential.

Note that information about the structure of SS
space is contained in the square of the gradient (see
Berezin 2003)

(∇R)2 = γabR,aR,b . (3)

The surfaces R(r, x0) = const, for which (∇R)2 = 0,
divide M (4) into

R-regions M (4)
R ⊂M (4), when((∇R)2 < 0 and

T-regions M (4)
T ⊂M (4), when((∇R)2 > 0 .

In the R-region the surface R(r, x0) = const are time-
like, and in the T-region is spacelike. Using the gener-
alized Birkho� theorem, in the R-region we can choose
a coordinate system in which γab and R depend only on
the space-like coordinate r. Similarly, in the T-region,
there exists an system in which γab and R depend on
the time-like coordinate x0.
In work of Gladush (2017) it is shown that the metric

(1) and action (2) in the T-region can be presented in
the form

ds2T = h−1(Ndx0)2 − h(dx1)2 −R2dσ2

= Rξ−1
(
Ndx0

)2 − ξR−1(dx1)2 −R2dσ2 . (4)

ST =

∫
LT dx

0 =

∫
l

2c

{
T

N
+
c4

κ
N

}
dx0 , (5)

where LT is the Lagrange function of the reduced sys-
tem with a kinetic term

T = −c
4

κ
ξ,0R,0 +R2ϕ,0

2 . (6)

Here R,0 = ∂R/∂x0, ξ,0 = ∂ξ/∂x0. In the R-region,
the action SR has a similar form, the evolutionary co-
ordinate x0 is space-like here.
From the Lagrangian LT the primary constraint

PN = ∂L/∂Ṅ = 0 and momenta Pi = ∂L/∂q̇i follow:

Pξ = − c3l

2κN
Ṙ , PR = − c3l

2κN
ξ̇ , Pϕ =

l

cN
R2ϕ̇ . (7)

From the Lagrange-Euler equation we obtain the sec-
ondary constraint

δLT

δN
=
∂LT

∂N
=

l

2c

{
− T

N2
+
c4

κ

}
= 0 . (8)

So the Hamiltonian function H = Pξ ξ̇+PRṘ+Pϕϕ̇−L
leads to the Hamiltonian constraint in the T-region

H =
Nc

2l

{
−4κ

c4
PξPR +

1

R2
P 2
ϕ − µ2

}
∼ 0 , (9)

where µ = cl/
√
κ.

In addition the system has the following conserved
values:
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Charge function is equal to the charge inside the region
of radius R

Q(N,R, ϕ,0) =
R2

N
ϕ,0 =

c

l
Pϕ . (10)

Total mass function taking into account the contribu-
tion of the electromagnetic �eld is (see Gladush 2017)

Mtot =
c2

2κ
R
(
1 + γabR,aR,b

)
+

Q2

2c2R
, (11)

In the considered variables, as well as through mo-
menta, it has the form

Mtot =
c2

2κ

[
R+

1

N2

(
ξṘ2 +

κR3ϕ̇2

c4

)]
, (12)

Mtot =
1

2l2

[
l2c2

κ
R+

4κ

c4
ξP 2

ξ +
1

R
P 2
ϕ

]
. (13)

We also write out the Poisson brackets of dynamic
quantities:

{H,Mtot} =
2κ

l2c4
PξH ∼ 0 , {H,Q} = {Mtot, Q} = 0 .

3. The con�guration space of the SS system

of gravitational and electromagnet �elds and

its geometry

The factor N can be excluded from the action (5),
while the original variational principle is transformed
into a variational principle in the con�guration space.
Indeed, (8) implies N =

√
κT/c2. Substituting this

expression into (5) we get

SR =

∫
LRdx

0 = µ

∫ √
Tdx0 = µ

∫
dΩ , (14)

where

dΩ2 = T(dx0)2 = −c
4

κ
dξdR+R2dϕ2 > 0 (15)

is the metric minisuperspace R. We see that SR is the
action for a geodesic in the con�guration space. The
geodesic equations derived from this, together with the
equation for N, are equivalent to the original Einstein
equations. De�nitions of the momenta (7) can now be
rewritten in the standard form

Pa = µΩab
dqa

dΩ
, (16)

as momenta of the particle with mass µ and 3-velocity
dqa/dΩ = {dξ/dΩ, dR/dΩ, dϕ/dΩ}, moving along the
geodesic in a minisuperspace.

It turns out that the minisuperspace with the metric
(15) is �at. Therefore, there are transformations of
�eld functions, for example,

ξ =
κ

c4

(
cτ − x− y2

cτ + x

)
, (17)

ϕ =
y

cτ + x
, R = cτ + x ,

leading metrics (15) to Lorentz form

dΩ2 = −c2dτ2 + dx2 + dy2 . (18)

Substituting Pξ = ∂S/∂ξ, PR = ∂S/∂R, Pϕ = ∂S/∂ϕ
into the Hamiltonian constraint (9), we arrive at the
Einstein-Hamilton-Jacobi (EHJ) equation

−4κ

c4
∂S

∂ξ

∂S

∂R
+

1

R2

(
∂S

∂ϕ

)2

=
l2c2

κ
. (19)

His solution is

S =
l

c
Qϕ+ Pξξ −

l2c6

4κ2Pξ

(
κQ2

c4R
+R

)
. (20)

We de�ne the BH mass by the equation Mtot = m.
Then

Pξ = ±lc2
√

m

2κξ0
. (21)

As a result, the trajectories equations in the minisu-
perspace take the form

ϕ(T ) =

√
ξ0

2κm

Q

T
, ξ(T ) =

c3

2κm
ξ0TFT (T,m,Q) ,

(22)
where in the T-region R = cT and

FT (T,m,Q) = −1 +
2κm

c3T
− κQ2

c6R2
. (23)

For the metric function in (4) we �nd

h =
c2ξ0
2κm

FT (T,m, q) , h = − c2ξ0
2κm

FR(R,m, q) (24)

for the T- and R-regions, respectively, and
FR(R,m, q) = −FT (T = R/c,m, q). These ex-
pressions lead to standard representations of the
Reissner-Nordstrom metric. in the T- and R-regions.
Consider the trajectories structure in the con�gura-

tion space. The region of admissible motions corre-
sponding to a solution in a T-region is determined by
the conditions ξ > 0, R > 0 or

−Ω2 = c2τ2 − x2 − y2 > 0 , R = cτ + x > 0 , (25)

which correspond to the upper interior of the cone
Ω2 = 0 in coordinates {cτ, x, y} (see �g. 1). In these
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Figure 1: Mini-superspace SS con�guration of grav-
itational and electromagnetic �elds in coordinates
{cτ, x, y}.

coordinates, solutions (22) are described by straight
lines:

cτ(R) = 1
2

[(
1 − a

Rg

)
R+ a

]
,

x(R) = 1
2

[(
1 + a

Rg

)
R− a

]
, (26)

y =
√

ξ0
Rg
Q, Rg = 2κm

c2 , a = ξ0c
4

κ

The evolution of the system in con�guration
space, for given M and Q, can be represented
as motion along a straight of the family (26),
starting outside the cone Ω2 = 0 on the line
cτ(0) = a/2, x(0) = −a/2, y =

√
ξ0/RgQ , (central

singularity). Further, the straight intersects the cone
Ω2 = 0 with R = R1 (inner horizon), comes upon
inside the cone, crosses it with R = R2 (outer horizon)
and leaves to in�nity of the minisuperspace. The
motion inside the cone Ω2 = 0 of the minisuperspace
corresponds to the solution for the T-region of the
S-T, to the motion outside the cone corresponds to
the solution for the R-regions of the S-T (see Fig.
1). For an extremely charged BH, when |Q| = m

√
κ,

the corresponding straight of the family (26) touches
the cone Ω2 = 0 at the point R1 = R2 = mκ. For
superextremal charges |Q| > m

√
κ these straights lie

outside the cone Ω2 = 0.

4. Quantization of a spherically symmetric

con�guration of the gravitational and electro-

magnetic �elds

The quantum states of the �eld con�guration un-
der consideration are determined by the wave function
Ψ(R, ξ, ϕ) on the minisuperspace with the coordinates
{R, ξ, ϕ}. The corresponding momentum operators in
this representation have the form:

P̂R = −i~ ∂

∂R
, P̂ξ = −i~ ∂

∂ξ
, P̂ϕ = −i~ ∂

∂ϕ
. (27)

The classical Hamiltonian, the total mass and charge
functions lead to operators

Ĥ =
Nc

2l

{
4κ~2

c4
∂2

∂R∂ξ
− ~2

R2

∂2

∂ϕ2
− c2l2

κ

}
, (28)

M̂ =
1

2l2

(
l2c2

κ
R− 4κ~2

c4
∂

∂ξ
ξ
∂

∂ξ
− ~2

R

∂2

∂ϕ2

)
. (29)

Q̂ =
c

l
P̂ϕ = −i c~

l

∂

∂ϕ
. (30)

For the Hermitian operator of the total mass, in the
con�guration space we use the following ordering of
the operators: P̂ξξP̂ξ. The following commutation re-
lations hold[
Ĥ, M̂

]
= −2κ~2

l2c4
∂

∂ξ
Ĥ ∼ 0 ,

[
Ĥ, Q̂

]
=
[
Q̂, M̂

]
= 0 .

States with a certain total mass and charge correspond
to eigenfunctions and eigenvalues of the operators of
total mass and charge:

M̂Ψm = mΨm , Q̂Ψq = qΨq . (31)

They reduce to the following equations{
c2l2

κ
R− 4κ~2

c4
∂

∂ξ
ξ
∂

∂ξ
− ~2

R

∂2

∂ϕ2

}
Ψm = 2l2mΨm .

(32)
∂

∂ϕ
Ψq =

iql

c~
Ψq . (33)

From the last equation we obtain Ψq = Aei(ql/c~)ϕ.
The general wave functions of the DeWitt equation
ĤΨ = 0 and the charge operator, also as general wave
functions of the operators total mass and charge, can
be represented in the form

Ψ = ψ (ξ,R) ei(ql/c~)ϕ , Ψm = ψm (ξ,R) ei(ql/c~)ϕ .

The functions ψ and ψm satisfy the equations(
4∂2

∂R∂ξ
+
c2q2l2

κ~2
1

R2

)
ψ =

c6l2

κ2~2
ψ ,

{
l2c2

κ
R− 4κ~2

c4
∂

∂ξ
ξ
∂

∂ξ
+

1

R

q2l2

c2

}
ψm = 2ml2ψm .

Using the compatibility condition for the DeWitt and
eigenvalues equations for the mass operator, we con-
struct a regular solution of this system on the horizon,
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which leads to a wave function of a con�guration in a
state with given mass m and charge q for a T-region:

ΨT
m,q = CJ0

(
lc

l2pl
T
√
hFT (T,m, q)

)
ei(ql/c~)ϕ , (34)

where J0 is the Bessel function of the �rst kind of zero
order. The functions FT (T,m, q) > 0 is de�ned in (23).
Note that h and T are positive independent values here.
For the classical Reissner-Nordstrom solution, the vari-
ables h and R = cT enter the initial metric (4), at that
in the T-region, the value of h depends on T , according
to (24). We note that for the metric mini-superspace
(15), signature conditions are not violated in both the
T- and R-regions of the S-T. At that the evolution
of the system in con�guration space in all cases oc-
curs within the direction dΩ2 > 0. Therefore quan-
tum equations constructed in a minisuperspace are per-
formed independently of the type of the region of the
S-T. Thus, the wave function of the system in the R-
region has the form similar (34) and can be written out
by formally replacing hFT (T,m, q) → −hFR(R,m, q):

ΨR
m,q = CJ0

(
l

l2pl
R
√
−hFR(R,m, q)

)
ei(ql/c~)ϕ . (35)

Here R > 0 and h < 0. Since FR(R,m, q) > 0,
then the value under the radical is positive. In
the classical case, the value of h is determined by
the value of R through the function FR(R,m, q),
according to (24). The wave function (35) can be
formally obtained based on the metric (4) and the
Lagrangian of the con�guration LR in the R-region,
where the evolutionary parameter x0 is spacelike.
Therefore, the solution (35) can be considered an
analytic continuation of the solution (34) through the
horizons FR(R,m, q) = FT (T,m, q) = 0. Note that
the coe�cient N is not included in the wave func-
tion Ψm,q(h, T, ϕ), which determines the probability
amplitude of the con�guration {h, T, ϕ;m, q}, that
is, the points {h, T, ϕ} of a minisuperspace, for given
observables m, q. The mass and charge spectra of the
BH in this approach are continuous.

4. Discussion and conclusions

As it has been shown, the con�guration space of the
SS system of electromagnetic and gravitational �elds
is �at, therefore to solutions of the Einstein equations
there correspond straight lines in minisuperspace with
the metrics(18). This greatly simpli�es the di�erential-
geometric structure of EHJ equations solutions. In ad-
dition, metric functions can be expressed in terms of
the natural invariant parameter corresponding to the
geodesic in the minisuperspace. As a result, classical
solutions for S-T metrics can be constructed without
�xing the calibration, for an arbitrary lapse function.

We note also that the used di�erential equations
determines only the local structure of the space, while
the global structure needs to be rede�ne. Thus, the
question of the mass spectrum is not solved at local
approach, since the nature of the spectrum depends
on the global properties of the geometry of the S-T
and superspace, their structure as a whole, as well
as the structure of the phase space of the system.
Therefore, to obtain a discrete spectrum, additional
di�erential-geometric and algebraic (group) structures
are introduced on the space-time, con�guration or
phase spaces (see, for example, Barvinsky et al. 2001,
Das et al. 2003 and references therein). As a rule, a
discrete spectrum occurs in the presence of a potential
well or compact geometry of the con�guration or
phase space leading to the �nite motions.
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