УДК 621.983; 539.374

Яковлев С.С. Трегубов В.И. Пилипенко О.В. Пасынков А.А.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПЕРАЦИИ РОТАЦИОННОЙ ВЫТЯЖКИ С УТОНЕНИЕМ СТЕНКИ ТРУБНЫХ ЗАГОТОВОК ИЗ АНИЗОТРОПНОГО МАТЕРИАЛА И РАЗДЕЛЕНИЕМ ОЧАГА ДЕФОРМАЦИИ

При изготовлении тонкостенных осесимметричных оболочек различного назначения в настоящее время находят всё более широкое использование ротационная вытяжка. Для производства такого типа деталей находят успешное применение схемы ротационной вытяжки роликами с открытой и закрытой калибровкой, а также с разделением очага деформации [1–5].

Прокат, подвергаемый штамповке, как правило, обладает анизотропией механических свойств, обусловленной маркой материала и технологическими режимами его получения. Анизотропия механических свойств материала заготовки может оказывать как положительное, так и отрицательное влияние на устойчивое протекание технологических процессов обработки металлов давлением. Изучение процесса ротационной вытяжки с утонением осложняется также наличием локальной деформации и объемным характером состояния материала в пластической области [4–7].

Целью работы является разработка математической модели операции ротационной вытяжки с утонением стенки трубных заготовок из анизотропного материала и разделением очага деформации, выявить особенности расчета силовых режимов для 3-х роликовой схемы ротационной вытяжки осесимметричных оболочек с разделением деформации.

Схема с разделением деформации имеет ряд важных преимуществ по сравнению с традиционными схемами, состоящих в снижении потребных деформирующих сил (при прочих равных условиях), достижении более высоких степеней деформации за один проход, что позволяет интенсифицировать процесс ротационной вытяжки. Сущность указанной схемы состоит в том, что суммарная деформация разделяется между роликами или группой роликов по определённой зависимости (рис. 1).

Рис. 1. Трехроликовая схема ротационной вытяжки осесимметричных оболочек с разделением деформации при радиальном смещении роликов:

1 – ролик; 2 – оправка; 3 – деталь

Разделение деформации осуществляется взаимным смещением роликов либо в осевом и радиальном направлении, либо смещением только в радиальном направлении, при этом используются ролики с различным профилем [4, 5].

В работах [6, 7] разработана математическая модель формоизменения анизотропной трубной заготовки при ротационной вытяжке на специализированном оборудовании тонкостенных осесимметричных оболочек с утонением стенки коническими роликами с учетом локального очага деформации и фактической подачи S_d металла в очаг деформации (рис. 2).

Рис. 2. Схема очага деформации при ротационной вытяжке осесимметричных оболочек по прямому способу

Принимается, что материал трубной заготовки подчиняется условию пластичности Мизеса-Хилла и ассоциированному закону пластическому течения. Анизотропия механических свойств заготовки – цилиндрическая. В отличие от известных подходов к анализу кинематики течения материала в очаге пластической деформации принято, что процесс реализуется в условиях квазиплоской деформации. Компоненты скоростей деформации определяются в цилиндрической системе координат последовательно – радиальная, далее находится тангенциальная составляющая в предположении, что в очаге деформации реализуется квазиплоская деформация при граничном условии ее распределения на выходе из очага деформации.

Осевая составляющая скорости определяется путем интегрирования условия несжимаемости при граничном условии, связанным с распределением этой скорости на выходе из очага деформации. Принимая скорости потоков областей равными, находится скорость на выходе из очага деформации. В дальнейшем вычисляются компоненты скоростей деформации в цилиндрической системе координат и величина интенсивности скорости деформации. Используя уравнение равновесия в цилиндрической системе координат и уравнение пластического течения, устанавливающие связи между напряжениями и скоростями деформаций, после подстановки последних в уравнения равновесия получим систему уравнений для определения среднего напряжения. Учитывая, что на границе входа материала в очаг пластической деформации величина осевого напряжения равна нулю, т. е. $\sigma_z = 0$. Это условие, позволило определить распределение величин среднего напряжения σ на входе материала в очаг пластической деформации и радиальных σ_r , тангенциальных σ_{θ} , осевых σ_z и касательных $\tau_{r\theta}$, $\tau_{\theta z}$, $\tau_{r\theta}$ напряжений. Предварительно вычислив компоненты скоростей деформации, среднюю величину накопленной интенсивности деформации в очаге пластической деформации и среднюю величину интенсивности напряжения σ_{icp} в очаге деформации.

Получены выражения для определения составляющих сил ротационной вытяжки:

– радиальная

$$P_R = \iint \sigma_R r_k d\theta \sin \theta dz , \qquad (1)$$

– тангенциальная

$$P_{\tau} = \iint \sigma_{\tau|_{\theta=\theta_{\theta}}} dr \cos \theta_{\theta} dz \,, \tag{2}$$

- осевая

$$P'_{z} = \int_{R_{d}}^{r_{k}} \int_{0}^{\theta_{e}} \sigma_{z}(r,\theta) r dr d\theta, \qquad (3)$$

где

$$\sigma_{\tau} = \sigma_r \sin^2 \theta + \sigma_{\theta} \cos^2 \theta + \tau_{r\theta} \sin 2\theta;$$

$$\sigma_R = \sigma_r \cos^2 \theta + \sigma_{\theta} \sin^2 \theta - \tau_{r\theta} \sin 2\theta; \quad \sigma'_z = \sigma_z$$

С учетом составляющей силы трения осевая сила равна

$$P_z = P'_z + \mu_o P_R \,, \tag{4}$$

где µ₀ – коэффициент трения между поверхностями заготовки и оправки.

На рис. 3 представлены схемы ротационной вытяжки с разделением деформации путем радиального смещения трех роликов, установленных в одной плоскости, имеющих различные углы рабочего конуса. Разделение деформации при такой схеме достигается установкой роликов с различной величиной зазора от оправки, причем ролик с наименьшим углом устанавливается с наибольшим зазором, а ролик, имеющий наибольший угол в комплекте, устанавливается с зазором, равным толщине стенки готовой детали на обрабатываемом участке.

При такой установке деформирующие ролики при ротационной вытяжке образуют три последовательно расположенных неразрывных участка деформации, наклоненных к оси детали под различными углами. Деформирование на начальном участке осуществляется роликом с минимальным углом, а на последнем участке – роликом с максимальным углом. Такой порядок расположения очагов деформации позволяет ограничить образование наплыва (α_{p1}), обеспечить более высокую точность диаметральных размеров изготавливаемые деталей (α_{p3}).

Рис. 3. Схема очага деформации при ротационной вытяжке осесимметричных оболочек тремя роликами, смещенными в радиальном направлении

Важным условием обеспечения высокой точности при использовании схемы (рис. 2) является обеспечение равновесия радиальных сил:

$$P_{R1} = P_{R2} = P_{R3} \,. \tag{5}$$

Приведенные выше соотношения позволяют рассчитать распределение суммарной степени деформации ε ($\varepsilon = 1 - t_k / t_0$) между роликами ($\varepsilon_1, \varepsilon_2, \varepsilon_3$) с учетом неравномерного распределения давления на контактной поверхности ролика и заготовки, геометрических параметров используемых роликов и трубной заготовки, технологических параметров процесса, величины проекции поверхности контакта заготовки и ролика на площадь с нормалью в радиальном направлении и упрочнения материала детали на соответствующем участке деформирования.

Условие (5) не разрешается в явном виде относительно величин степеней деформации на первом ε_1 и втором ролике ε_2 , поэтому искомые величины устанавливаются путем численных расчетов по этому условию методом последовательных приближений с учетом приведенных выше соотношений соотношения:

$$(1-\varepsilon) = (1-\varepsilon_1)(1-\varepsilon_2)(1-\varepsilon_3).$$
(6)

Приближенная методика разделения деформации между роликами для 3-х роликовой схеме деформирования рассмотрена в работе [6]. При 3-х роликовых схемах с разделением деформации величины изменения толщины стенки для соответствующего ролика Δt_1 , Δt_2 и Δt_3 могут быть определены по выражениям соответственно:

$$\Delta t_{1} = \frac{\Delta t_{\text{сум}}}{1 + \sqrt{\frac{\text{tg}\alpha_{p2}}{\text{tg}\alpha_{p1}}} + \sqrt{\frac{\text{tg}\alpha_{p3}}{\text{tg}\alpha_{p1}}}}; \quad \Delta t_{2} = \frac{\Delta t_{\text{сум}}}{1 + \sqrt{\frac{\text{tg}\alpha_{p1}}{\text{tg}\alpha_{p2}}} + \sqrt{\frac{\text{tg}\alpha_{p3}}{\text{tg}\alpha_{p2}}}};$$

$$\Delta t_{3} = \frac{\Delta t_{\text{сум}}}{1 + \sqrt{\frac{\text{tg}\alpha_{p1}}{\text{tg}\alpha_{p3}}} + \sqrt{\frac{\text{tg}\alpha_{p2}}{\text{tg}\alpha_{p3}}}}, \quad (7)$$

где Δt_1 ; Δt_2 ; Δt_3 – величины изменения толщины стенки для соответствующего ролика; α_{p1} ; α_{p2} ; α_{p3} – углы рабочего конуса роликов; S_{ϕ} – величина фактической подачи металла в очаг деформации; D_p ; d_d – диаметр ролика и детали, мм, где Δt_1 ; Δt_2 ; Δt_3 – величины изменения толщины стенки для соответствующего ролика; α_{p1} ; α_{p2} ; α_{p3} – углы рабочего конуса роликов; S_{ϕ} – величина фактической подачи металла в очаг деформации; D_p ; d_d – диаметр ролика и детали, мм.

Величина радиальной составляющей силы в этом случае определяется по выражению (1), тангенциальная – по формуле:

$$P_{\tau} = P_{\tau 1} + P_{\tau 2} + P_{\tau 3}, \tag{8}$$

где $P_{\tau 1}$, $P_{\tau 2}$, $P_{\tau 3}$ – тангенциальные составляющие сил на первом, втором и третьем роликах соответственно;

$$P_{\tau 1} = \iint \sigma_{\tau 1|_{\theta=\theta_{e1}}} dr \cos \theta_{e1} dz ; \quad P_{\tau 2} = \iint \sigma_{\tau 2|_{\theta=\theta_{e2}}} dr \cos \theta_{e2} dz ;$$

$$P_{\tau 3} = \iint \sigma_{\tau 3|_{\theta=\theta_{e^3}}} dr \cos \theta_{e^3} dz;$$

где θ_{e1} , θ_{e2} , θ_{e3} – угол контакта заготовки с первым, вторым и третьим роликами; $\sigma_{\tau 1}$, $\sigma_{\tau 2}$, $\sigma_{\tau 3}$ – тангенциальные напряжения на первом, втором и третьем роликах соответственно.

Осевая сила на суппорт стана ротационной вытяжки вычисляется по выражению:

$$P_z = P_{z1} + P_{z2} + P_{z3}, (9)$$

где P_{z1} , P_{z2} , P_{z3} – осевые составляющие сил на первом, втором и третьем роликах соответственно; σ_{z1} , σ_{z2} , σ_{z3} – осевые напряжения на первом, втором и третьем роликах на выходе из очага деформации при z = 0 соответственно.

Момент сил, приложенный к оправке для осуществления пластического формоизменения в очаге деформации, приближенно может быть вычислен по формуле:

$$M_{\theta} \approx M_{\theta 1} + M_{\theta 2} + M_{\theta 3}$$

Работа деформации, совершаемая моментами $M_{\theta 1}$, $M_{\theta 2}$ и $M_{\theta 3}$ на углах $\theta_{e1}, \theta_{e2}, \theta_{e3}$ вычисляется по выражению:

$$A_{\partial e\phi} \approx M_{\theta 1} \theta_{e1} + M_{\theta 2} \theta_{e2} + M_{\theta 3} \theta_{e3}$$

В табл. 1 приведены результаты расчета распределения суммарной степени деформации по роликам при ротационной вытяжке осесимметричных деталей из стали 12Х3ГНМФБА по 3-х роликовой схеме деформирования с разделением очага пластической деформации по выражению (5) и по приближенной методике (7) при различных сочетаниях углов конусности роликов (α_{p1} , α_{p2} , α_{p3}). Расчеты выполнены для ротационной вытяжки осесимметричных деталей из трубной заготовки с наружным диаметром $D_0 = 116,2$ мм, и толщиной стенки трубы $t_0 = 6,05$ мм, роликами диаметром $D_p = 280$ мм. Механические характеристики стали 12Х3ГНМФБА приведены в работе [6].

Таблица 1

Распределение суммарной степени деформации по роликам при ротационной вытяжке осесимметричных оболочек из стали 12Х3ГНМФБА по 3-х роликовой схеме деформирования с разделением очага пластической деформации

Суммарная	Распределение суммарной степени деформации, %					
степень на роликах є _{ір}	по условию (5)			по условию (7)		
	20	40	60	20	40	60
ε _{lp}	5,08	11,01	16,51	5,67	12,11	18,46
ε2p	7,86	14,42	23,05	7,75	14,47	23,26
ε _{3p}	8,53	21,22	37,73	8,07	20,27	36,13

 $(\alpha_{p1} = 15^\circ; \alpha_{p2} = 20^\circ; \alpha_{p3} = 30^\circ)$

Анализ результатов расчетов, приведенных в табл. 1, показывает, что максимальная величина расхождения результатов расчетов степеней деформации по роликам, вычисленная из условия равенства радиальных проекций площадей контактов роликов с заготовкой (7) и условия равенства радиальных составляющих сил (5), не превышает 10 %.

На рис. 4 представлены графические зависимости изменения относительных величин радиальной \overline{P}_R , тангенциальной \overline{P}_{τ} и осевой \overline{P}_z составляющих сил от степени деформации ε при ротационной вытяжке по 3-х роликовой схеме ротационной вытяжки с разделением деформации осесимметричных деталей из стали 12ХЗГНМФБА при фиксированных значениях рабочей подачи *S* и углов конусности роликов (α_{p1} , α_{p2} и α_{p3}). Точками обозначены результаты экспериментальных исследований.

Рис. 3. Зависимости изменения \overline{P}_R , \overline{P}_{τ} , \overline{P}_z от є для стали 12Х3ГНМФБА (*S*=1 мм/об; $\alpha_{p1} = 10^\circ$, $\alpha_{p2} = 20^\circ$; $\alpha_{p3} = 30^\circ$)

Расчеты выполнены для трубной заготовки из стали 12Х3ГНМФБА с наружным радиусом $R_e = 64,15$ мм, толщиной стенки трубы $t_0 = 6,05$ мм; диаметром ролика $D_p = 280$ мм; частотой вращения шпинделя n = 75 мин⁻¹; $\mu_o = 0,15$. Здесь введены обозначения:

$$\overline{P}_{R} = P_{R} / [(R_{e} - 0.5t_{0})t_{0}\theta_{e}\sigma_{0,2}]; \quad \overline{P}_{\tau} = P_{\tau} / [(R_{e} - 0.5t_{0})t_{0}\theta_{e}\sigma_{0,2}];$$
$$\overline{P}_{z} = P_{z} / [(R_{e} - 0.5t_{0})t_{0}\theta_{e}\sigma_{0,2}],$$

а точками обозначены результаты экспериментальных исследований.

Анализ результатов расчетов и графических зависимостей показывает, что при обработке деталей по схеме с разделением деформации радиальная P_R и осевая P_z силы имеют меньшие значения по сравнению с обработкой указанных деталей по однороликовой схеме обработки. Значения тангенциальной силы P_{τ} не имеют больших расхождений при используемых схемах деформирования. Установлено, что ротационная вытяжка с использованием 3-х роликовых схем с разделением деформации позволяет снизить величины радиальных P_R сил деформирования на 25–30 % по сравнению с аналогичной схемой обработки без разделения деформации. Величина тангенциальной P_{τ} составляющей силы ротационной вытяжки практически не зависит от используемой схемы обработки. Установлено, что с увеличением степени деформации относительные величины радиальных \overline{P}_R , осевых \overline{P}_z и тангенциальных \overline{P}_{τ} составляющих сил интенсивно растут. Установлено, что с увеличением рабочей подачи S все три относительные составляющие сил возрастают. Заметим, что изменение условий трения на контактной поверхности оправки и заготовки существенно влияет на относительную величину осевой силы \overline{P}_z . С ростом коэффициента трения на оправке μ_o величина относительной силы \overline{P}_z возрастает.

Выполнены экспериментальные исследования операции ротационной вытяжки с использованием 3-х роликовых схем с разделением деформации осесимметричных деталей из стали 12Х3ГНМФБА. Экспериментальные исследования ротационной вытяжки производилась на 3-х роликовом станке модели В-280М. Стан оснащен 3-х роликовой кареткой с гидравлическим приводом осевого перемещения. Деформирующие ролики расположены через 120° по периметру окружности. В процессе обработки деталей производилась регистрация замеров трех составляющих сил ротационной вытяжки: радиальной P_R, осевой P_z и тангенциальной P_{τ} . Тангенциальная сила P_{τ} определялась косвенным путем, по замерам разности мощностей потребляемой электроприводом при обработке детали и при холостом вращении оправки с деталью. Для замеров осевой P_z и радиальной P_R нагрузок при ротационной вытяжке применительно к станку В-280М были разработаны и изготовлены гидроподушки. Заготовки были подвергнуты ротационной вытяжке с различными степенями деформации в диапазоне от 30 до 60 % и величинами рабочей подачи в диапазоне от 0,5 до 1 мм/об. Для каждой группы фиксированных параметров проводилось по шесть опытов. За основу брались среднеарифметические данные составляющих сил. Распределение суммарной степени деформации & между роликами определялось с учетом соотношения (5).

Результаты экспериментальных работ показали, удовлетворительную сходимость расчётных и экспериментальных значений сил, не превышающую 10 %. Экспериментально установлено, что ротационная вытяжка с использованием 3-х роликовых схем с разделением деформации позволяет снизить величины радиальных и осевых сил деформирования на 25–30 % по сравнению с аналогичными схемами обработки без разделения деформации. Величина тангенциальной составляющей силы ротационной вытяжки не зависит от используемой схемы обработки.

Работа выполнена в рамках государственного задания на проведение научноисследовательских работ Министерства образования и науки Российской Федерации на 2014–2020 годы и гранта РФФИ № 13-08-97-518 р_центр_а.

выводы

1. Разработана математическая модель операции ротационной вытяжки с утонением стенки осесимметричных оболочек из анизотропных материалов с разделением деформации.

2. Установлено, что ротационная вытяжка с использованием 3-х роликовых схем с разделением деформации позволяет снизить величины радиальных P_R сил деформирования на 25–30 % по сравнению с аналогичной схемой обработки без разделения деформации. Величина тангенциальной P_{τ} составляющей силы ротационной вытяжки практически не зависит от используемой схемы обработки.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Гредитор М. А. Давильные работы и ротационное выдавливание. / М. А. Гредитор. – М. : Машиностроение, 1971. – 239 с.

2. Могильный Н. И. Ротационная вытяжка оболочковых деталей на станках. / Н. И. Могильный. – М. : Машиностроение, 1983. – 190 с.

3. Ковка и штамповка: справочник: в 4 т. Т. 4. Листовая штамповка / Под общ. ред. С. С. Яковлева; ред. совет : Е. И. Семенов (пред.) [и др.] 2-е изд., перераб. и доп. М. : Машиностроение, 2010. – 732 с.

4. Яковлев С. С. Теория и технология штамповки анизотропных материалов. / С. С. Яковлев, В. Д. Кухарь, В. И. Трегубов / под ред. С. С. Яковлева. – М. : Машиностроение, 2012. – 400 с.

5. Гречников Ф. В. Деформирование анизотропных материалов. / Ф. В. Гречников. – М. : Машиностроение, 1998. – 446 с.

6. Яковлев С. С. Ротационная вытяжка с утонением стенки осесимметричных деталей из анизотропных трубных заготовок на специализированном оборудовании. / С. С. Яковлев, В. И. Трегубов, С. П. Яковлев. – М. : Машиностроение, 2009. – 265 с.

7. Пилипенко О. В. Технологические параметры ротационной вытяжки с утонением стенки трубных заготовок из анизотропного материала. / О. В. Пилипенко // Вестник машиностроения, 2008. – № 4. – С. 74–78.

REFERENCES

1. Greditor M. A. Davil'nye raboty i rotacionnoe vydavlivanie. / M. A. Greditor. – M. : Mashinostroenie, 1971. – 239 s.

2. Mogil'nyj N. I. Rotacionnaja vytjazhka obolochkovyh detalej na stankah. / N. I. Mogil'nyj. – M. : Mashinostroenie, 1983. – 190 s.

3. Kovka i shtampovka: spravochnik: v 4 t. T. 4. Listovaja shtampovka / Pod obshh. red. S. S. Jakovleva; red. sovet : E. I. Semenov (pred.) [i dr.] 2-e izd., pererab. i dop. M. : Mashinostroenie, 2010. – 732 s.

4. Jakovlev S. S. Teorija i tehnologija shtampovki anizotropnyh materialov. / S. S. Jakovlev, V. D. Kuhar', V. I. Tregubov / pod red. S. S. Jakovleva. – M. : Mashinostroenie, 2012. – 400 s.

5. Grechnikov F. V. Deformirovanie anizotropnyh materialov. / F. V. Grechnikov. – M. : Mashinostroenie, 1998. – 446 s.

6. Jakovlev S. S. Rotacionnaja vytjazhka s utoneniem stenki osesimmetrichnyh detalej iz anizotropnyh trubnyh zagotovok na specializirovannom oborudovanii. / S. S. Jakovlev, V. I. Tregubov, S. P. Jakovlev. – M. : Mashinostroenie, 2009. – 265 s.

7. Pilipenko O. V. Tehnologicheskie parametry rotacionnoj vytjazhki s utoneniem stenki trubnyh zagotovok iz anizotropnogo materiala. / O. V. Pilipenko // Vestnik mashinostroenija, 2008. – N_{2} 4. – S. 74–78.

Яковлев С. С.	д-р техн. наук, проф. ТулГУ
Трегубов В. И.	д-р техн. наук, проф. ТулГУ
Пилипенко О. В.	д-р техн. наук, проф., ректор ГУ-УНПК
Пасыноков А. А.	канд. техн. наук, доц. ТулГУ

ТулГУ – ФГБОУ ВПО «Тульский государственный университет», г. Тула, Россия.

ФГБОУ ВПО «Государственный университет учебно-научно-производственный комплекс», г. Орел, Россия.

E-mail: mpf-tula@rambler.ru

Статья поступила в редакцию 06.02.2014 г.