УДК 539.89: 538.911+537.31+539.424+539.52

Давиденко А. А. Сенникова Л. Ф. Дмитренко В. Ю.

ДЕФОРМАЦИОННАЯ ПОРИСТОСТЬ ПРУТКОВ МЕДИ М06 ПОСЛЕ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ

В работе исследована деформационная пористость прутков из меди марки М0б (99,99%) после интенсивной пластической деформации (ИПД) методами гидроэкструзии (ГЭ) и угловой гидроэкструзии (УГЭ). Показано, что использование УГЭ при обработке меди позволило снизить дефектность материала, по сравнению с гидроэкструзией, и повысить его функциональные свойства.

Известно, что методы интенсивной пластической деформации (ИПД) позволяют обрабатывать материалы с большими степенями деформаций в условиях высоких приложенных напряжений. В чистых металлах и ряде сплавов ИПД обеспечивают формирование ультрамелкозернистой структуры с размерами зерен до 100–200 нм. Однако сформировавшиеся зерна имеют специфическую субструктуру с присутствием зернограничных и решеточных дислокаций и наличием больших упругих искажений кристаллической решетки. Большая плотность дислокаций в границах зерен и искажения кристаллической решетки за счет дальнодействующих упругих напряжений могут привести к дефектности материала, а именно, к образованию микропор и микротрещин, которые способствуют разрушению материала. Поэтому исследования влияния ИПД на дефектность структуры и свойства материалов являются актуальными.

В настоящее время известно ряд работ по изучению поврежденности меди и других материалов в результате обработки методом равноканального углового прессования (РКУП). В работе [1] исследовалось влияние равноканального углового прессования с противодавлением на деформационную пористость в меди М0б (99,99%). После 4 проходов РКУП без противодавления в образцах наблюдалась пористость, с применением же противодавления 200 МПа пористость обнаружена не была. Однако при дальнейшем увеличении числа проходов до 8 и 12 РКУП с противодавлением пористость снова появлялась. Авторы вышеуказанной работы считают, что противодавление способно подавлять пористость только на начальных этапах деформации, а для большого числа проходов РКУП этот механизм перестает быть эффективным.

В работе [2] исследовалось образование пористости в титане в результате РКУП с использованием различных деформационных схем (маршрутов). Применение противодавления по схеме A, как правило, способствует уменьшению объемной доли дефектов всех размеров. РКУП по схеме B_c (4 прохода) без противодавления увеличивает объем дефектов менее 15 нм, а объем дефектов размером более 15 нм значительно уменьшается. Применение противодавления по схеме B_c не влияет на количество дефектов.

С помощью методов малоуглового рассеяния нейтронов (SANS) и просвечивающей электронной микроскопии было установлено возникновение наноразмерной пористости в титане коммерческой чистоты после обработки РКУП. Исследовались образцы после 1-4 проходов РКУП с противодавлением от 0 до 175 МПа. Замечено, что РКУП с противодавлением приводит к уменьшению среднего размера пор, который также зависит от маршрута обработки.

Цель настоящей работы – определить влияние прямой гидроэкструзии (ГЭ) и угловой гидроэкструзии (УГЭ) на образование деформационной пористости в меди М0б и ее влияние на свойства материала.

Исходным материалом настоящего исследования служили промышленные горячепрессованные прутки из чистой бескислородной меди марки МОб (99,99%) диаметром 50 мм. Деформационную обработку заготовок исходного диаметра осуществляли при комнатной температуре по двум схемам: 1 – прямая гидроэкструзия (ГЭ) и 2 - угловая гидроэкструзия (УГЭ) (Рис. 1). Отличительной особенностью методов ГЭ и УГЭ является использование жидкости высокого давления для выдавливания заготовки из контейнера. Технологические приемы обработки подробно описаны в работе [3].

Рис. 1. Схемы установок для деформационной обработки заготовок методами гидроэкструзии (а) и угловой гидроэкструзии (б)

Первая схема включала отжиг (600° С – 1 час) исходной заготовки диаметром 50 мм и ее ГЭ до диаметра 6,2 мм. По второй схеме, исходный пруток диаметром 50 мм распускался на 4 части, из которых, соответственно, вырезали 4 заготовки диаметром 13 мм, отжигали их при температуре 600° С – 1 час и делали от 1 до 5 проходов УГЭ по схеме B_c [1] (с поворотом заготовки вокруг своей продольной оси на 90° в одном направлении). После каждого прохода на образцах, как в первом, так и во втором случаях, проводились исследования структуры и свойств.

Термическую обработку образцов проводили в лабораторной печи СНОЛ-7,2/1100.

Дефектную структуру (микропоры, микротрещины), свойства образцов в исходном состоянии и после деформации анализировали методами дюрометрических (твердомер Виккерса HV-5), волюметрических (весы SHIMADZU) исследований, растровой электронной микроскопии (JEOL JSM-6490), измерениями электросопротивления по четырехточечной схеме.

Сканирование поверхности поперечного шлифа медных прутков, начиная с диаметра 13 мм, проводили при помощи растровой электронной микроскопии (PEM) в ВЕС-режиме с шагом 1 мм, на малых диаметрах (6-4 мм) с шагом 0,5 мм.

Данные исследований твердости и плотности образцов по переходам в зависимости от степени накопленной логарифмической деформации *е* представлены на рис. 2.

На начальном этапе деформирования, как для первой схемы, так и для второй, происходит традиционное ожидаемое изменение твердости и плотности: твердость повышается, а плотность материала немного снижается. При дальнейшем увеличении степени деформации ГЭ твердость и плотность материала остаются практически на одном уровне. После УГЭ уровень плотности, с увеличением числа проходов, не меняется, а твердость повышается.

Исследования структуры подтвердили результаты, полученные ранее на проволочных образцах [4], что в схемах с использованием УГЭ наблюдается существенное уменьшение общего количества пор, и за счет этого, по-видимому, происходит некоторое повышение твердости.

Рис. 2. Изменение твердости (а) и плотности (б) образцов меди М0б в зависимости от степени накопленной логарифмической деформации при ГЭ и УГЭ

На рис. 3 представлена типичная картина пористости медного прутка диаметром 13 мм после ГЭ и УГЭ.

Рис. 3. Растровая электронная микроскопия поперечного сечения прутка меди М0б диаметром 13 мм:

а – после ГЭ (*e*=2,6); б – после УГЭ (*e*=2,3)

Однако, наличие распределения несплошностей по размерам затрудняет количественную оценку степени поврежденности материала, поэтому для этой цели использовали измерение деформационного разуплотнения (дефекта плотности, $\Delta\rho/\rho$), которое характеризует интегральный объем несплошностей всех размеров [5]. Деформационное разуплотнение может быть связано также с дислокациями, вакансиями, ориентированными микронапряжениями. В работе [6] был оценен вклад различных факторов в разуплотнение чистого Al, деформированного растяжением. Оказалось, что вклад от дислокаций составляет менее $3 \cdot 10^{-6}$ г/см³, вклад от ориентирования микронапряжений – $(2-4) \cdot 10^{-6}$ г/см³, от равновесных вакансий – $5 \cdot 10^{-13}$ г/см³. Поэтому, учитывая весьма незначительный вклад этих дефектов кристаллической решетки в деформационное разуплотнение материала, далее речь пойдет только о микронесплошностях.

Исследования показали, что при больших пластических деформациях ($e \ge 1$), использование УГЭ при обработке меди способствует уменьшению интегрального объема несплошностей всех размеров в исследуемых образцах, тогда как ГЭ приводит к его увеличению (рис. 4).

Рис. 4. Дефект плотности в меди М0б при монотонной (ГЭ) и немонотонной (УГЭ) схемах деформирования

Известно, что важную роль при развитии и слиянии несплошностей играют размеры структурной гетерогенности (блоков, зерен), которые оказывают тормозящее влияние на процесс разрушения на макро- и микроуровнях [5]. Поэтому можно предположить, что существенное уменьшение количества микропор в меди при использовании УГЭ происходит за счет получения ультрамелкозернистой структуры и, следовательно, большой протяженности границ зерен, которые сдерживают образование новых несплошностей и тормозят развитие уже существующих.

Поры, как и другие структурные несовершенства, приводят к повышению электросопротивления материалов [7] вследствие возникновения больших искажений структуры. Так как деформация УГЭ в нашем случае уменьшает количество микропор, то вызывает интерес количественная оценка уровня электросопротивления образцов, полученных ГЭ и комбинацией УГЭ и ГЭ. Исследовались образцы после ГЭ прутка с диаметра 50 мм до диаметра 4 мм и образцы после 4 проходов УГЭ прутка диаметра 13 мм с последующей его ГЭ до диаметра 4 мм. Параметры эксперимента по определению электросопротивления образцов представлены в табл. 1.

Таблица 1

ГЭ			4 УГЭ + ГЭ		
Диаметр <i>d</i> , мм	Накопленная деформация, <i>Σе</i>	Электро- сопротивление <i>р</i> , мкОм·см	Диаметр <i>d</i> , мм	Накопленная деформация, <i>Σе</i>	Электро- сопротивление <i>р</i> , мкОм·см
15,0	2,4	1,789	13,0	4,6	1,793
9,4	3,3	1,797	9,4	5,3	1,790
6,2	4,1	1,795	6,2	6,1	1,795
4,0	5,0	1,803	4,0	7,0	1,803

Электросопротивление образцов меди МОб после разных схем обработки

Видно, что с повышением степени деформации электросопротивление увеличивается в образцах, полученных, как с применением УГЭ, так и без нее. Однако, уровень электросопротивления образцов практически одинаков для этих двух схем пластической деформации, несмотря на более высокую степень деформации в случае использования УГЭ. Исходя из вышесказанного, можно предположить, что одним из факторов препятствующему дальнейшему росту электросопротивления в сильнодеформированных образцах после УГЭ, может быть и уменьшение их пористости.

ВЫВОДЫ

Использование метода угловой гидроэкструзии в технологической схеме деформационной обработки бескислородной меди М0б способствует уменьшению интегрального объема несплошностей в образцах и позволяет получить высокопрочный материал с хорошей электропроводностью.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Divinski S. Effect of back pressure during equal-channel angular pressing on deformation-induced porosity in copper / J. Ribbe, G. Schmitz, M. Rosner, R. Lapovok, Y. Estrin, G. Wilde // Scripta Mater. -2013. -Vol. 68. $-N_{\rm P} 12$. -P. 925-928.

2. Evolution of nanoscale porosity during equal-channel angular pressing of titanium / R. Lapovok, D. Tomus, J. Mang, Y. Estrin , T.C. Lowe // Acta Mater. – 2009. – Vol. 57. –№ 10. – P. 2909–2918.

3. Effect of combining the equal-channel angular hydroextrusion, direct hydroextrusion and drawing on properties of copper wire / V. Spuskanyuk, O. Davydenko, A. Berezina, O. Gangalo, L. Sennikova, M. Tikhonovsky, D. Spiridonov // J. Mater. Process. Technol. – 2010. – Vol. 210. – P. 1709–1715.

4. Поврежденность медной проволоки в процессе больших пластических деформаций / Л.Ф. Сенникова, А.А. Давиденко, В.З. Спусканюк, В.В. Бурховецкий, К.И. Слива, Т.А. Закорецкая // Вопросы материаловедения. – 2014. – Т. 80. – № 4 – С 73–78.

5. Черемской П.Г. Поры в твердом теле / П.Г. Черемской, В.В. Слезов, В.И. Бетехтин. – М.: Энергоатомиздат, 1990. – 376 с.

6. Баранов Ю.В. Импульсные технологии обработки наноструктурных материалов с целью залечивания дефектов / Ю.В. Баранов, Г.Ж. Сахвадзе, В.В. Столяров // Вестник научно-технического развития. – 2010. – №10 (38). – С.12–15.

7. Чопра К.Л. Электрические явления в тонких пленках /К. Л. Чопра. – М.: Мир, 1972. – 220 с.

REFERENCES

1. Divinski S. Effect of back pressure during equal-channel angular pressing on deformation-induced porosity in copper / J. Ribbe, G. Schmitz, M. Rosner, R. Lapovok, Y. Estrin, G. Wilde // Scripta Mater. -2013. -Vol. 68. $-N_{\text{P}} 12$. -P. 925-928.

2. Evolution of nanoscale porosity during equal-channel angular pressing of titanium / R. Lapovok, D. Tomus, J. Mang, Y. Estrin , T.C. Lowe // Acta Mater. – 2009. – Vol. 57. – N 10. – R. 2909–2918.

3. Effect of combining the equal-channel angular hydroextrusion, direct hydroextrusion and drawing on properties of copper wire / V. Spuskanyuk, O. Davydenko, A. Berezina, O. Gangalo, L. Sennikova, M. Tikhonovsky, D. Spiridonov // J. Mater. Process. Technol. – 2010. – Vol. 210. – P. 1709–1715.

4. Povrezhdennost' mednoj provoloki v processe bol'shih plasticheskih deformacij / L.F. Sennikova, A.A. Davidenko, V.Z. Spuskanjuk, V.V. Burhoveckij, K.I. Sliva, T.A. Zakoreckaja // Voprosy materialovedenija. – 2014. – T. 80. – N_{2} 4 – S 73 – 78.

5. Cheremskoj P.G. Pory v tverdom tele / P.G. Cheremskoj, V.V. Slezov, V.I. Betehtin. – M.: Jenergoatomizdat, 1990. – 376 s.

6. Baranov Ju.V. Impul'snye tehnologii obrabotki nanostrukturnyh materialov s cel'ju zalechiva-nija defektov / Ju.V. Baranov, G.Zh. Sahvadze, V.V. Stoljarov // Vestnik nauchno-tehnicheskogo razvitija. – 2010. – №10 (38). – S. 12–15. 7. Chopra K.L. Jelektricheskie javlenija v tonkih plenkah / K. L. Chopra. – M.: Mir, 1972. – 220 s.

Давиденко А. А. – канд. техн. наук, ст. науч. сотр. ДонФТИ Сенникова Л. Ф. – канд. техн. наук, ст. науч. сотр. ДонФТИ Дмитренко В. Ю. – канд. техн. наук, ст. науч. сотр. ДонФТИ

ДонФТИ – Донецкий физико-технический институт им. А.А.Галкина НАН Украины, г. Киев.

E-mail: dav76@ukr.net

Статья поступила в редакцию 29.02.2016 г.