УДК 621.961

Карнаух С. Г. Карнаух Д. С. Таровик Н. Г. Чоста Н. В.

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ РАЗДЕЛЕНИЯ СОРТОВОГО ПРОКАТА НА МЕРНЫЕ ЗАГОТОВКИ

Анализ современного состояния заготовительного производства показывает, что его дальнейшее развитие непосредственно связано с решением проблем повышения качества заготовок, получаемых из сортового и плоского проката, снижения себестоимости, сокращения расхода материалов и энергии.

Одной из основных операций в технологической цепочке машиностроительного производства является операция получения заготовок мерной длины.

Известно более десяти способов разделения сортового проката, которые можно разделить на безотходные и отходные [1, 2]. В основе безотходных способов разделения лежит внешнее силовое нагружение, в результате которого происходит сдвиг разделяемых частей проката друг относительно друга. К отходным способам относятся способы, основанные на удалении слоя металла из зоны реза. Очевидно, что безотходные способы относятся к материалосберегающим, высокопроизводительным и более экономичным методам разделения. Поэтому развитие и совершенствование безотходных способов разделения является задачей актуальной и перспективной.

Значительный вклад в создание и развитие теории, технологии и оборудования для разделения внесли отечественные ученые: Е. А. Попов, В. Т. Мещерин, В. А. Тимощенко, С. С. Соловцов, В. П. Романовский, П. Е. Кислый, В. Г. Кононенко, Е. Н. Высоцкий и др. Благодаря их исследованиям процессы безотходного разделения сортового проката широко внедрены в производство [3, 4].

В настоящее время появилось много программных разработок, которые позволяют моделировать различные технологические процессы, в том числе и процессы разделения проката на мерные заготовки. Применение современных пакетов программ для проектирования технологий в основном ориентировано на уменьшение сроков подготовки производства, отладки технологии, а также минимизации финансовых затрат. Проектирование технологических процессов в современных CAD/CAM/CAE системах позволяет также сократить затраты, которые могут появиться в процессе производства, так как становится возможным более точно прогнозировать дефекты различного рода, связанные с недоработкой технологии [5, 6].

Наиболее мощной системой моделирования технологических процессов, с возможностью анализа трехмерного (3D) поведения металла при различных процессах обработки давлением, является DEFORM-3D [7].

Целью статьи является моделирование безотходных способов разделения сортового проката с применением специализированного программного комплекса DEFORM-3D и проверка адекватности моделей реальным объектам.

Рассмотрим моделирование процесса отрезки сдвигом по схеме неполностью закрытой отрезки с пассивным зажимом (рис. 1). Заготовка 1 с размерами: диаметр -40 мм, длина -200 мм, размещается в двух втулочных ножах 2, 3 (шириной по 80 мм каждый). Нож 2 выполнен подвижным в вертикальном направлении, нож 3 – неподвижным.

Заготовка 1 размещается в отверстиях ножей 2, 3. Под действием усилия привода подвижный нож 2 перемещается вниз, осуществляя отрезку мерной заготовки.

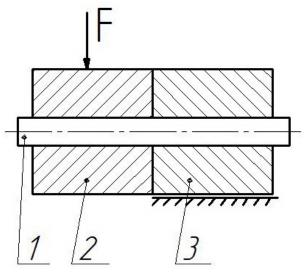


Рис. 1. Конструктивная схема отрезки сдвигом [1]

Поскольку в DEFORM-3D не предусмотрено использование марок сталей, применяемых на производстве в Украине, то выбирали наиболее подходящие из имеющихся сталей в базе данных самой программы (табл. 1).

Таблица 1 Материалы заготовок, используемые в расчетах, а также их аналоги, применяемые в Украине

Материал из базы данных DEFORM	Аналог материала, применяемого в Украине
C 10 – ISO	Ст 10
C 35 (C 35k) – DIN	Сталь 35
C 45 – DIN	Сталь 45
14 NiCr14 – DIN	Сталь 12Х18Н9Т

Для моделирования процесса отрезки задавали следующие параметры:

- скорость перемещения ножа 0,65 м/с;
- − температура 20°С;
- критерий разрушения Normalized C&L.

Смоделированы процессы отрезки заготовок из разных марок сталей. Результаты расчетов представлены на рис. 2, 3 [8].

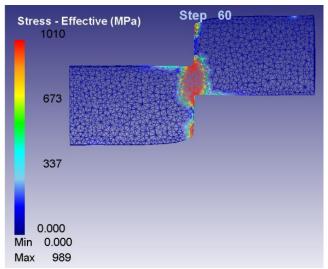


Рис. 2. Распределение напряжений по сечению проката заготовки из стали С 35

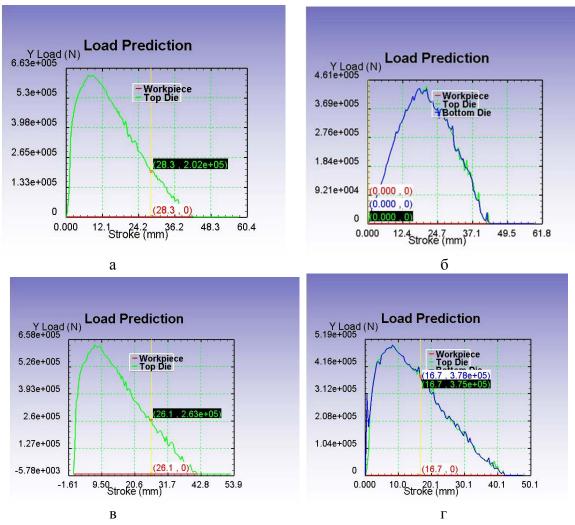


Рис. 3. Изменение силы отрезки при разделении сортового проката из разных марок сталей: a-C 35; $\delta-C$ 45; B-C 10; $\Gamma-14$ NiCr14

Анализ полученных результатов показывает, что они хорошо коррелируются с известными экспериментальными данными [6] (табл. 2). Расхождение результатов теоретических и экспериментальных исследований находится в диапазоне от 4% до 14%.

Таблица 2 Расчетные и экспериментальные данные, полученные при отрезке сортового проката сдвигом по схеме неполностью закрытой отрезки с пассивным зажимом

Материал	Максимальная сила отрезки сдвигом, кН	Экспериментальные значения максимальной силы отрезки сдвигом, кН [6]	Расхождение результатов, %
C 10	420	370	12
C 35	500	480	4
C 45	550	510	7
14 NiCr14	640	550	14

Рассмотрим моделирование процесса холодной ломки изгибом по схеме трехточечной ломки изгибом (рис. 4). Параметры заготовки: диаметр -16 мм; длина -150 мм. Материал заготовок представлен в табл. 1. На заготовку нанесен концентратор напряжений треугольной формы с размерами: глубина -3 мм; радиус закругления в вершине -0.15 мм; угол при вершине -90° .

Заготовка размещается на опорах, а нагрузка прикладывается посредине между опор на расстоянии $L_1 = L_2 = 56$ мм.

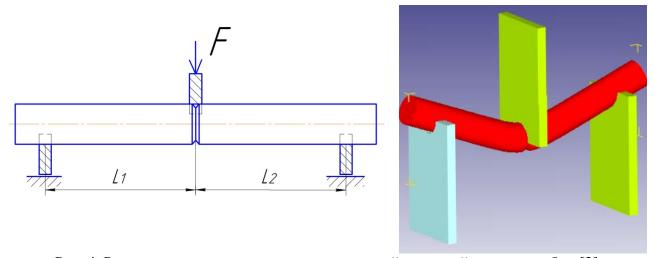


Рис. 4. Разделение проката по схеме трехточечной холодной ломки изгибом [2]

Для реализации компьютерной модели процесса построили геометрическую трехмерную модель инструментального узла и заготовки. Задали каждому объекту свойства: модели заготовки, подверженной деформации, указан тип объекта — пластичный (Plastic), моделям инструмента — жесткий (Rigid). Сгенерировали сетку для каждого из объектов с оптимальным количеством элементов. Расчет вели с использованием Лагранжевого типа деформации (Lagrangian Incremental). Для моделирования процесса отрезки задавали следующие параметры:

- скорость перемещения ножа 0,65 м/с;
- температура -20°C;
- критерий разрушения Normalized C&L.

Смоделированы процессы разделения заготовок из разных марок сталей (см. табл. 1). Результаты расчетов представлены на рис. 5.

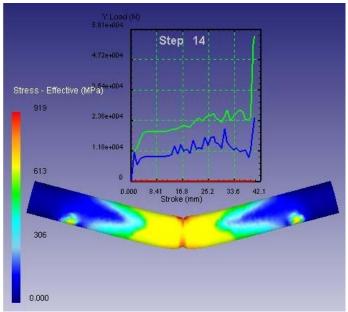


Рис. 5. Результаты моделирования трехточечной холодной ломки изгибом заготовок из стали C 45

Анализ расчетов показал, что график изменения силы ломки от хода инструмента не соответствует реальному технологическому процессу холодной ломки изгибом, в котором в момент разделения происходит резкий сброс силы ломки. Это несоответствие связано с тем, что разрушение должно быть связано с нарушением сплошности сетки конечных элементов во фронте трещины, что не реализовано в DEFORM-3D.

ВЫВОДЫ

Применение DEFORM-3D позволяет с высокой достоверностью моделировать процессы разделения сортового проката отрезкой сдвигом. Анализ результатов моделирования процесса отрезки сортового проката сдвигом показывает, что расхождение расчетных значений максимальной силы отрезки с экспериментальными данными находится в диапазоне 4–14% [6].

При этом для повышения достоверности моделирования разрушения материалов в сложных немонотонных процессах, например, холодной ломки изгибом, необходимо дополнить систему DEFORM-3D подпрограммой, позволяющей реализовать критерий разрушения, учитывающий особенности данного процесса.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Соловцов С. С. Безотходная разрезка сортового проката в штампах / С. С. Соловцов. М.: *Машиностроение*, 1985. – 176 с.
- 2. Финкель В.М. Холодная ломка проката / В. М. Финкель, Ю. И. Головин, Г. Б. Родюков. М.: *Металлургия*, 1982. – 192 с.
- 3. Соловцов С.С. Состояние и перспективы развития производства точных заготовок из сортового проката / С. С. Соловцов, Н. Л. Лисунец // Перспективы производства точных заготовок и деталей методами объемного деформирования. – МДНТП. – 1990. – С. 76-81.
- 4. Кириловский В.В. Новые схемы ломки проката / В. В. Кириловский, В. А. Тимощенко // Кузнечноитамповочное производство. -1990. -№ 9. - C. 9-11.
- 5. Бегунов А.А. Силовые характеристики безотходных способов разделения проката / А. А. Бегунов, С. Г. Карнаух // Сборник трудов Седьмой конференции пользователей программного обеспечения САД-FEM GmbH / Под ред. А. С. Шаикого. – М. Полигон – пресс, 2007. – С. 360–365.
- 6. Roganov L.L., Karnaukh S.G., Karnaukh D.S., Shevchenko E.P. 12th International conference «Research and development in mechanical industry» RaDMI 2012, Vol. 2. – C. 862–865.
- 7. Φ илина A.B. Моделирование процесса получения точных коротких заготовок в закрытых штампах / А. В. Филина // Технология машиностроения. – №12. – 2009.– С. 13–16.
- 8. Roganov L.L. Modelling of process of reception of measured cut-to-length sections from rolled section steel of circular section according to the scheme of incompletely closed parting cut / L.L. Roganov, S.G. Karnaukh, D.S. Karnaukh // 12th International conference «Research and development in mechanical industry» RaDMI 2012. – Vol. 2. – C. 787–790.

REFERENCES

- 1. Colovcov S. S. Bezothodnaja razrezka sortovogo prokata v shtampah / S. S. Solovcov. M.: Mashinostroenie, 1985. – 176 s.
- 2. Finkel' V.M. Holodnaja lomka prokata / V. M. Finkel', Ju. I. Golovin, G. B. Rodjukov. M.: Metallurgija, 1982. – 192 s.
- 3. Solovcov S.S. Sostojanie i perspektivy razvitija proizvodstva tochnyh zagotovok iz sortovogo prokata / S. S. Solovcov, N. L. Lisunec // Perspektivy proizvodstva tochnyh zagotovok i detalej metodami obemnogo deformirovanija. – MDNTP. – 1990. – S. 76–81.
- 4. Kirilovskij V.V. Novye shemy lomki prokata / V. V. Kirilovskij, V. A. Timoshhenko // Kuznechnoshtampovochnoe proizvodstvo. – 1990. – $\cancel{N} = 9$. – S. $\cancel{9}$ –11.
- 5. Begunov A.A. Silovye harakteristiki bezothodnyh sposobov razdelenija prokata / A. A. Begunov, S. G. Karnauh // Sbornik trudov Sed'moj konferencii pol'zovatelej programmnogo obespechenija CAD FEM GmbH / Pod red. A. S. Shackogo. – M. Poligon – press, 2007. – S. 360–365.

 6. Roganov L.L., Karnaukh S.G., Karnaukh D.S., Shevchenko E.P. 12th International conference «Research
- and development in mechanical industry» RaDMI 2012, Vol. 2. C. 862–865.
- 7. Filina A.V. Modelirovanie processa poluchenija tochnyh korotkih zagotovok v zakrytyh shtampah / A. V. Filina // Tehnologija mashinostroenija. – №12. – 2009. – S. 13–16.
- 8. Roganov L.L. Modelling of process of reception of measured cut-to-length sections from rolled section steel of circular section according to the scheme of incompletely closed parting cut / L.L. Roganov, S.G. Karnaukh, D.S. Karnaukh // 12th International conference «Research and development in mechanical industry» RaDMI 2012. – Vol. 2. – S. 787–790.

– канд. техн., доц. ДГМА Карнаух С. Г.

 преподаватель МК ДГМА Карнаух Д. С.

- ассист. каф. ОПМ ДГМА Таровик Н. Г.

- канд. техн. наук, доц. ДГМА Чоста Н. В.

ДГМА – Донбасская государственная машиностроительная академия, г. Краматорск.

E-mail: sergey.karnauh@dgma.donetsk.ua