УДК 621.98.04-4

Анищенко А. С. Кухарь В. В. Присяжный А. Г.

ПРИМЕНЕНИЕ ФОРМУЛ ЛЯМЕ ДЛЯ АНАЛИЗА ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ОБОЛОЧЕК ПРИ СВЕРХПЛАСТИЧЕСКОЙ ФОРМОВКЕ

Сверхпластическая формовка (СПФ) оболочек из листовых заготовок предусматривает строгое регламентирование температурно-скоростных, структурных и силовых параметров процесса. Необходимость герметичного прижима заготовок и связанная с этим большая разнотолщинность стенок формуемых оболочек ограничивают сортамент изготавливаемых деталей по предельной глубине, радиусам сопряжения поверхностей, точности воспроизведения контура, несущей способности и т. д. Прогнозирование геометрической формы оболочек при СПФ позволит уточнить номенклатуру формуемых деталей по радиусам сопряжения поверхностей, точности воспроизведения контура, повысить точность расчетов деформационно-силовых параметров процесса.

Расчеты процессов сверхпластической формовки полых деталей базируются, как правило, на теории тонкостенных безмоментных оболочек, используя уравнения Лапласа и установившейся стадии ползучести [1, 2]:

$$\sigma_1 r_1^{-1} + \sigma_2 r_2^{-1} = p S^{-1}; \tag{1}$$

$$\sigma = k\xi^m,\tag{2}$$

где σ_1 , σ_2 – меридиональное и тангенциальное напряжение в оболочке при формовке; r_1 , r_2 – главные радиусы кривизны оболочки;

p – давление деформирующей среды;

S – толщина заготовки;

σ – интенсивность напряжений течения;

 ξ – интенсивность скоростей деформации;

m – коэффициент скоростного упрочнения;

k – коэффициент, зависящий от свойств материала.

Разнотолщинность оболочек при СПФ изучена многими исследователями [1–3]. В меньшей степени изучена геометрическая форма оболочек на стадиях свободной выдувки и при оформлении микрорельефа матриц. Исследования в этом направлении [3–5] показывают, что радиусы кривизны свободно формуемых и сопрягаемых поверхностей оболочек зависят от уровня сверхпластичных свойств материала заготовок, определяемого коэффициентами k и m, уравнения (2), давления и температуры формовки, исходной, текущей толщины и высоты оболочки в рассматриваемом месте, условий трения на границе оболочкаматрица.

Радиусы кривизны r_1 и r_2 обычно определяют из различных формул, аппроксимирующих экспериментальные данные. Для первой стадии СПФ предполагают, что контур формуемой заготовки является частью окружности, имеет форму параболы или эллипса [1–9]. В расчетах угловых зон детали контур аппроксимируют уравнениями окружности [2], используют уравнения цепной линии и окружности [10]. При расчетах СПФ переход от одной стадии к другой связан с изменением системы координат, исходных допущений, граничных условий, а также отсутствием взаимозависимостей коэффициентов, входящих в формулу (2). Это усложняет расчеты и снижает их точность.

Чтобы избежать этих сложностей в работе [11] была предпринята попытка аппроксимировать контур деформируемой заготовки на всех стадиях СПФ единой универсальной формулой, в качестве которой был выбран «суперэллипс» Ляме:

$$(x/a)^p + (y/b)^q = 1,$$
 (3)

где *р* и *q* – показатели степени;

 $x = r_i / r$, $y = h_i / r$, a = r / r = 1, $b = h / r (r_i, h_i, r, h -$ текущие и максимальные значения соответственно радиуса основания и высоты оболочки).

В зависимости от величин *p*, *q*, *a* и *b* формула (3) описывает весь набор контуров в безразмерных координатах, которые имеют листовые заготовки на различных стадиях СПФ.

Формулой Ляме были аппроксимированы контуры оболочек различной высоты из материалов с различными сверхпластичными свойствами [11]. Отклонение ординат контуров оболочек на стадии свободной формовки от сферообразной формы достигало 10–20 %, что допустимо для части деталей и соответствует 16-му квалитету точности. Однако для аналитических расчетов процессов СПФ такая погрешность может быть критической, поскольку в расчетах используются радиусы кривизны r_1 и r_2 , определяемые через первые и вторые производные указанных уравнений, описывающих контур оболочек.

Анализ графиков y = f(x), приведенных в работе [11], показал некорректность расчетов параметров СПФ угловых зон оболочек, базирующихся на схеме затекания сферообразного сегмента ($r_1 = r_2 = const$ вдоль контура сегмента в данный момент времени) в щель, имеющую в сечении контур равнобедренного треугольника [12]. Указанная схема допустима, если радиус основания, например, цилиндрического стакана равен его высоте, распределение толщины по контуру сегмента близко к равномерному, а формовка происходит при одинаковых условиях контактного трения на границе оболочка-матрица.

Целью данной работы явилось изучение распределения радиусов кривизны r_1 и r_2 оболочек на стадиях свободной СПФ и формовки угловых зон цилиндрических стаканов.

Ранее нами в работе [11] для аппроксимации контуров с h = r были выбраны оболочки из сплавов AM26, AlMg5 и сплава Sn-38 %Pb с разными структурами, обеспечивающими коэффициент m = 0,25 и 0,60. Заготовки из сплава AM26 имели переменную толщину: $S_0 = 1,45$ и 1,23 мм соответственно в центральной части диаметром 60 мм и на кольцевом периферийном участке внешним и внутренним диаметрами, равными 100 и 60 мм. Цилиндрические стаканы с h = 0,6r формовали из сплава AlMg3. с аппроксимацией контура на первой стадии СПФ и при оформлении углов цилиндрической матрицы. В табл. 1 указаны аппроксимирующие формулы Ляме для оболочек с h = r и h = 0,6r [11].

Таблица 1

i opinjubi unipokonsudini konijpob odobio tek npi eti i								
Для оболо	очек с $h = r$	Для оболочек с $h = 0,6r$						
Параметры	Аппроксимирующая	Параметры	Аппроксимирующая					
оболочки	функция	оболочки	функция					
сплав АМг6,	$(250)^{1/2}$	СПФ сегмента в не-	()1/					
заготовка переменной	$y_2 = (1 - x^{2,58})^{1,96}$	равномерном	$y_1 = 0.6(1 - x^{2.36})^{1.23}$					
толщины	· · · · ·	температурном поле						
сплав Sn-38 %Pb, m = 0,60	$y_3 = \left(1 - x^{2,02}\right)^{1/1,92}$	первая стадия формовки стакана	$y_1^s = 0.6 \left(1 - x^{1.94}\right)^{1/1,28}$					
сплав Sn-38 %Pb, m= 0,25	$y_4 = \left(1 - x^{1,98}\right)^{1/1,72}$	формовка полуфабриката со смазкой	$y_2^s = 0.6(1 - x^{3,03})^{1/1,32}$					
сплав AlMg5	$y_5 = (1 - x^{1,99})^{1/1,78}$	формовка полуфабриката без смазки	$y_3^s = 0.6(1 - x^{2.58})^{1/1.64}$					

Формулы аппроксимации контуров оболочек при СПФ

Значения главных радиусов кривизны оболочек R_1 , = r_1 / r , $R_2 = r_2 / r$ в безразмерных координатах рассчитывали по формулам [13]:

12

$$R_{1} = \left\{ 1 + \left[y'(x) \right]^{2} \right\}^{3/2} \left[y''(x) \right]^{-1}, \quad R_{2} = -y(x) \left[1 + y'(x) \right]^{1/2}, \tag{4}$$

которые при выборе в качестве функции y = f(x) формулы Ляме (3) приобретали вид:

$$R_{1} = \frac{\left[1 + (bp/q)^{2} a^{-2p/q} x^{2(p-2)} (a^{p} - x^{p})^{(1-q)/q}\right]^{3/2}}{-(bp/q) a^{-p/q} x^{p-2} (a^{p} - x^{p})^{(1-2q)/q} [(p-1)(a^{p} - x^{p}) + ((q-1)/q) px^{p}]};$$
(5)

$$R_{2} = -ba^{-p/q} \left(a^{p} - x^{p}\right)^{1/q} \left[1 + \left(bp/q\right)^{2} a^{-2p/q} x^{2(p-1)} \left(a^{p} - x^{p}\right)^{(2-2q)/q}\right]^{1/2}.$$
(6)

На рис. 1 представлены изменения главных радиусов кривизны R_1 и R_2 контуров оболочек вдоль их радиуса основания. Для $R_1 = R_2 = -1$ контур оболочки идеально сферический, а знак «—» означает, что их центры находятся ниже контура оболочки.

Полусфера из сплава *Pb-38 %Sn* с высоким коэффициентом m = 0,6 характеризуется достаточно равномерным меридиональным радиусом R_I , отклоняющимся от $R_I = -1$ не более чем на ± 5 %. Несколько больший разброс величин R_I (± 15 %) фиксируется для полусферы из сплава *AlMg5*. У оболочек из баббита с m = 0,25 отклонения R_I от единицы более существенны: (-15...+45) %.

Регулирование утонения заготовки при СПФ приводит к огромным величинам R_1 в зоне полюса оболочек (x = 0...0,1), то есть к наличию практически горизонтальных площадок. Для полусфер из заготовок переменной толщины минимум R_1 фиксируется в зонах сопряжения толстой и тонкой частей заготовок ($R_{1min} = -0,76$ при x = 0,57). Для сегментов с y = 0,6, формуемых в неравномерном температурном поле, охлаждение полюса не распространяется на всю деформируемую поверхность, в связи с этим в диапазоне x = 0,17...0,95отклонение радиуса R_1 от – 1 не превышает ± 20 %.

Тангенциальный радиус кривизны R_2 в для полусфер из сплавов *AlMg5* и *Pb-38 %Sn* лишь при x > 0,65 он монотонно снижается от значения $R_2 = -1$. Интенсивность снижения тем выше, чем ниже уровень сверхпластичных свойств материала заготовки.

Полусфера 2 при $x = \le 0,5$ характеризуется равенством $|R_2| = y \sim 1$, на участках с x > 0,5 меньшая толщина заготовки (1,23 мм) обусловливает увеличение $|R_2|$ в 1,2 раза.

СПФ в неравномерном температурном поле с y = 0,6 обусловливает контур с постоянно уменьшающимся значением $|R_2|$ от полюса к фланцу, причем разность значений R_2 при x = 0 и 0,95 в 4...8 раз выше, чем для оболочек из баббита с коэффициентом m = 0,25 и 0,60.

Свободная формовка купола высотой y = 0,6 обеспечивает значения радиуса R_1 в интервале (x = 0...0,95) от $R_1 = -0,8...-0,7$ до $R_1 = -1,34$ при x = 0,68. Вторая стадия формовки цилиндрического стакана характеризуется аномально высокими значениями R_1 в полюсных зонах формуемого полуфабриката. При формовке стакана без смазки значения R_1 его контура уменьшаются в направлении от полюса к фланцу, причем при $x \sim 0,7...0,8$ имеет место перегиб кривой $R_1 = f(x)$. Наличие смазки между матрицей и формуемым полуфабрикатом обусловливает более интенсивное снижение R_1 до минимума $R_{1min} = -0,74$ при x = 0,63и последующий рост R_1 до $R_{1max} = -0,9$ при x = 0,9. Таким образом, в диапазоне $x \sim 0,25...0,7$ наличие смазки снижает R_1 при СПФ углов стаканов.

Для всех стадий СПФ цилиндрических стаканов тангенциальный радиус кривизны R_2 в полюсе равен по модулю высоте y = 0,6 и монотонно уменьшается к фланцевым зонам. Однако в сравнении с СПФ сферообразного сегмента оформление контура дна стакана сопровождается снижением интенсивности изменения R_2 в 2...3 раза. В интервале (x = 0...0.86, $R_2 = -0,6...-0,46$) радиус R_2 в меньшей степени уменьшается при СПФ с наличием смазки, что говорит о более равномерном пластическом течении металла.

<u>13</u>

Следует отметить, что на второй стадии СПФ стакана с использованием смазки в интервале $x \sim 0.5...0.8$ имеет место соотношение $R_1 / R_2 = 1.5...2$, которое, вероятно, является следствием превышения на этом же интервале тангенциальной деформации над меридиональной, зафиксированного в работе [4].

Рис. 1. Распределение значений главных радиусов кривизны R_1 и R_2 вдоль радиуса основания оболочки при СПФ:

а, б – свободная формовка сегментов с относительной высотой *у* = 1 и 0,6:

1...5 – соответственно для контуров $y_{1...5} = f(x)$;

в, г – формовка цилиндрического стакана с у = 0,6:

1...3 – соответственно для контуров $y_{1...3}^s = f(x)$ (см. табл. 1)

Рассмотрим СПФ углов, например, стаканов Ø200 × 60 мм (y = 0,6) в матрицу с углом 90⁰ между дном и стенками. На рис. 2 показаны контуры угловых зон стаканов при различных вариантах СПФ. Параметры контуров для этих зон приведены в табл. 2.

Для реально достижимого контура 1 $R_1^{min} = 0,063$ и $r^{min} = r \cdot R_1 = 6,3$ мм. Взаимно перпендикулярные расстояния от центра отсчета радиуса к контурам у дна и стенки матрицы равны соответственно $r_1 = 6,5$ и $r_1 = 6,6$ мм, т.е. на 3...5 % больше r_1^{min} . Радиусы кривизны в этих местах равны соответственно $r_1^y = 16,7$ и $r_1^x = 16,8$ мм, то есть в 2,65 раза больше, чем r_1^{min} . Центры этих радиусов r_1^y и r_1^x расположены на параболической кривой 4, отстоящей от биссектрисы 7 угла между стенками и дном матрицы соответственно в стороны стенки и дна матрицы. Чем больше изменение радиуса R_1 в рассматриваемых участках контура, тем интенсивнее отклонение параболы от биссектрисы 7.

Кривые 2 и 3 с минимум $R_1^{min} = 0,060$, характерны для угловых контуров стаканов при СПФ с наличием или отсутствием смазки, R_1 и R_1 превышают R_1^{min} на 3...18 %; радиусы кривизны R_1^{y} и R_1^{x} в 2,5...3,0 раза превышают R_1^{min} , а их центры отстоят от биссектрисы 7 на расстояниях, равных, соответственно: 0,052 и 0,045 для контура 2; 0,048 и 0,033 для контура 3.

Рис. 2. Контуры угловых зон стаканов при различных вариантах СПФ:

1-3 – соответственно для контуров $y^{s_{1...3}} = f(x)$ (см. табл. 2); 4–6 – отклонение центров радиусов кривизны от минимума при росте радиусов в направлении дна и стенки соответственно для контуров 1–3; 7 – биссектриса угла между дном и стенкой матрицы

Таблица 2

Тасчетные значения параметров сопряжения углов стаканов при сттФ								
Функция контура стакана	Минимум радиуса	Расстояние от центра отсчета r_1^{min} до контура		Радиусы кривизны (см. рис. 2)				
	кривизны r_1^{min}	дна r_1	стенки r_1	r_1^{y}	r_{l}^{x}			
$y_1^s = 0.6 \left(1 - x^{23.6}\right)^{\frac{1}{13.2}}$	0,063	0,065	0,066	0,167	0,168			
$y_2^s = 0.6 \left(1 - x^{32}\right)^{\frac{1}{9}}$	0,063	0,047	0,065	0,158	0,178			
$y_1^s = 0.6 (1 - x^{15})^{1/19}$	0,060	0,071	0,062	0,181	0,150			

Расчетные значения параметров сопряжения углов стаканов при СПФ

Следует отметить, что: 1) контуры с $R_1^{min} < 0,03$, достижимы на практике, если при СПФ была предварительная операция вытяжки жестким пуансоном; 2) контуры 1...3 на рис. 2 могут быть отформованы для стаканов с исходной толщиной $S_0 \le R_1/3$ [14], т. е. для нашего случая: $S_0 \ge 2$ мм.

выводы

Установлено, что различные варианты сверхпластической формовки обусловливают различные радиусы кривизны контуров оболочек, значительно отличающиеся от радиуса сферического сегмента. Показано, что радиус сопряжения дна и стенки стаканов возрастает вдоль контура оболочки от минимума в стороны дна и стенок, а его центр отдаляется от биссектрисы угла стакана по двум ветвям параболы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Giuliano G. Superplastic forming of advanced metallic materials / G. Giuliano. – Oxford : Woodhead Publishing Limited, 2011. – 377 p.

2. Голенков В. А. Специальные технологические процессы и оборудование обработки давлением / В. А. Голенков [и др.]. – М. : Машиностроение, 2004. – 474 с.

3. Анищенко А. С. Изотермическая и сверхпластическая деформация металлов / А. С. Анищенко. – Saarbrücken : LAMBERT Academic Publishing, 2014. – 129 с.

4. Анализ влияния контактного трения на пневмоформовку в режиме сверхпластичности цилиндрических оболочек / О. М. Смирнов, А. С. Анищенко, С. Ф. Маринин, М. А. Цепин // Бюллетень ВИЛС. Технология легких сплавов, 1980. – № 6. – С. 23–27.

5. Пневмоформовка листовых материалов в состоянии сверхпластичности / С. М. Поляк, В. С. Соломатин, М. А. Цепин, А. С. Анищенко. – М. : ЦНТИ «Поиск», 1981. – 107 с.

6. Holt D. L. The Relation Between Superplasticity and Grain Boundary Shear in the Aluminum-Zinc Eutectic Alloy / D. L. Holt // Trans. AWE. – 1968. – V. 242. – \mathbb{N} 1. – P. 25–31.

7. Lechten J.-P. Analyses theorique et experimentale du gonflement dans le domaine de superplasticite / J.-P. Lechten, J.-C. Patrat, B. Baudelet // Revue de Physique Appliquee. – 1977. – N_{2} 12 (1). – P. 7–14.

8. Hwang Y. M. Evaluation of tubular materials by a hydraulic bulge test / Y. M. Hwang, Y. K. Lin, T. Altan // International Journal Machine Tools and Manufacturing. $-2007. - N \ge 47. - P. 343-351.$

9. Vitu L. Comparaison de trois modeles pour le post-traitment de mesures issues du test de gonflement libre de tubes / L. Vitu, [etc.] // 22-ieme Congres Francais de Mecanique. – Lyon, 2015. – P. 67–78.

10. Куликов С. Н. Возможные варианты уточнения модели свободного термоформования изделий в круглой пройме / С. Н. Куликов, А. Е. Шерышев, М. А. Шерышев // Научные труды МАТИ. – 2010. – № 17 (89). – С. 50–53.

11. Анищенко А. С. Аппроксимация контура оболочек при сверхпластической формовке формулой Ляме / А. С. Анищенко, В. В. Кухарь, Е. А. Мктрчян // Вестник КРСУ. – 2017. – Т. 17. – № 1. – С. 3–5.

12. Ларин С. Н. К оценке напряженного состояния заготовки в процессе пневмоформовки многослойных листовых конструкций с прямоугольными каналами / С. Н. Ларин, В. И. Платонов, А. В. Чарин // Обработка металлов давлением : сб. науч. трудов. – Краматорск : ДГМА, 2017. – № 1. – С. 149–155.

13. Overfelt P. L. Superspheroid Geometries for Radome Analysis / P. L. Overfelt. – Naval Air Warfare Center Weapons Division China Lake. – CA 93555-6001. – September, 1994. – 40 p.

14. Ceschini L. Superplastic Forming (SPF) of Materials and SPF Combined with Diffusion Bonding: Technological and Design Aspects / L. Ceschini, A. Africantov // Metallurgical Science and Technology. – 1992. – Vol. 10(3). – P. 41–55.

REFERENCES

1. Giuliano G. Superplastic forming of advanced metallic materials / G. Giuliano. – Oxford : Woodhead Publishing Limited, 2011. – 377 p.

2. Golenkov V. A. Special'nye tehnologicheskie processy i oborudovanie obrabotki davleniem / V. A. Golenkov [i dr.]. – M. : Mashinostroenie, 2004. – 474 s.

3. Anishhenko A. S. Izotermicheskaja i sverhplasticheskaja deformacija metallov / A. S. Anishhenko. – Saarbrücken : LAMBERT Academic Publishing, 2014. – 129 s.

4. Analiz vlijanija kontaktnogo trenija na pnevmoformovku v rezhime sverhplastichnosti cilindri-cheskih obolochek / O. M. Smirnov, A. S. Anishhenko, S. F. Marinin, M. A. Cepin // Bjulleten' VILS. Tehnologija legkih splavov, 1980. – N_{2} 6. – S. 23–27.

5. Pnevmoformovka listovyh materialov v sostojanii sverhplastichnosti / S. M. Poljak, V. S. Solo-matin, M. A. Cepin, A. S. Anishhenko. – M. : CNTI «Poisk», 1981. – 107 s.

6. Holt D. L. The Relation Between Superplasticity and Grain Boundary Shear in the Aluminum-Zinc Eutectic Alloy / D. L. Holt // Trans. AWE. – 1968. – V. 242. – N 1. – R. 25–31.

7. Lechten J.-P. Analyses theorique et experimentale du gonflement dans le domaine de superplasticite / J.-P. Lechten, J.-C. Patrat, B. Baudelet // Revue de Physique Appliquee. – 1977. – N 12 (1). – R. 7–14.

8. Hwang Y. M. Evaluation of tubular materials by a hydraulic bulge test / Y. M. Hwang, Y. K. Lin, T. Altan // International Journal Machine Tools and Manufacturing. $-2007. - N \ge 47. - P. 343-351.$

9. Vitu L. Comparaison de trois modeles pour le post-traitment de mesures issues du test de gonflement libre de tubes / L. Vitu, [etc.] // 22-ieme Congres Francais de Mecanique. – Lyon, 2015. – P. 67–78.

10. Kulikov S. N. Vozmozhnye varianty utochnenija modeli svobodnogo termoformovanija izdelij v krugloj projme / S. N. Kulikov, A. E. Sheryshev, M. A. Sheryshev // Nauchnye trudy MATI. – 2010. – N_{2} 17 (89). – S. 50–53.

11. Anishhenko A. S. Approksimacija kontura obolochek pri sverhplasticheskoj formovke formuloj Ljame / A. S. Anishhenko, V. V. Kuhar', E. A. Mktrchjan // Vestnik KRSU. – 2017. – T. 17. – N 1. – S. 3–5.

12. Larin S. N. K ocenke naprjazhennogo sostojanija zagotovki v processe pnevmoformovki mnogoslojnyh listovyh konstrukcij s prjamougol'nymi kanalami / S. N. Larin, V. I. Platonov, A. V. Charin // Obrabotka metallov davleniem : sb. nauch. trudov. – Kramatorsk : DGMA, 2017. – N_2 1. – S. 149–155.

13. Overfelt P. L. Superspheroid Geometries for Radome Analysis / P. L. Overfelt. – Naval Air Warfare Center Weapons Division China Lake. – CA 93555-6001. – September, 1994. – 40 p.

14. Ceschini L. Superplastic Forming (SPF) of Materials and SPF Combined with Diffusion Bonding: Technological and Design Aspects / L. Ceschini, A. Africantov // Metallurgical Science and Technology. – 1992. – Vol. 10(3). – P. 41–55.

Анищенко А. С. – канд. техн. наук, доц. ПГТУ; Кухарь В. В. – д-р техн. наук, проф. ПГТУ;

Присяжный А. Г. – канд. техн. наук, доц. ПГТУ.

ПГТУ – Приазовский государственный технический университет, г. Мариуполь.

E-mail: aas540628@gmail.com; kvv.mariupol@gmail.com; agp87514@gmail.com