УДК 544.03:539.3

Белошенко В. А. Возняк А. В. Возняк Ю. В. Дмитренко В. Ю. Савченко Б. М. Чишко В. В.

ВЛИЯНИЕ РАВНОКАНАЛЬНОЙ МНОГОУГЛОВОЙ ЭКСТРУЗИИ НА СТРУКТУРУ И СВОЙСТВА ПОЛИМЕРНЫХ КОМПОЗИТОВ РАЗЛИЧНОЙ АРХИТЕКТУРЫ

В настоящее время значительное внимание уделяется разработке полимерных гинанокомпозитов, характеризующихся повышенным бридных И уровнем физикомеханических свойств в результате синергетического эффекта (при наличии двух или более армирующих материалов) или создания наноразмерных структур [1, 2]. Армирование органическими и неорганическими волокнами или дисперсными наполнителями дает возможность также создавать материалы с необычными комбинациями механических, термических и химических свойств. Формирование ориентированного состояния у полимерной матрицы или наполнителя – еще один прием получения материалов с новыми свойствами. Одним из таких процессов является равноканальная многоугловая экструзия (РКМУЭ), позволяющая реализовать биаксиальную ориентацию в блочных образцах полимеров, способствующую уникальному сочетанию различных характеристик. Так, у аморфных стеклообразных полимеров под действием РКМУЭ происходит повышение плотности, модуля упругости и прочности, относительного удлинения при растяжении, ударной вязкости [3]. У аморфнокристаллических полимеров наблюдаются многократное увеличение жесткости и прочности при сохранении исходной пластичности, «инварный эффект», существенное улучшение трибологических показателей [4-6]. Сведения о модифицирующем влиянии РКМУЭ на полимерные композиты ограничены системами на основе кристаллизующихся полимеров: полипропилен-органический монтмориллонит [7], полиэтилен(полипропилен)-графитовые нанопластины [8], полиэтилен-базальтовые волокна [9]. На их примере показано, что РКМУЭ является эффективным способом изменения структурных параметров нанонаполнителей (характеристическое отношение, ориентация пластин) и полимерной матрицы (молекулярная ориентация, степень кристалличности, совершенство кристаллитов), обусловливающим улучшение их физико-механических характеристик.

Целью работы является выяснение возможностей применения РКМУЭ для модификации полимерных композитов различной архитектуры.

Объекты исследования – слоистые композиты PET-G/ABS и PET/ABS (ABS – сополимер акрилонитрила с бутадиеном и стиролом, ABS Styrolution GP-22; PET – полиэтилентерефталат, EKOPET 80 BB; PET-G – гликоль-модифицированный полиэтилентерефталат, Eastar Copolyester 6763), дисперсно-наполненные – LLDPE/CNTs (LLDPE – линейный полиэтилен низкой плотности, EL-lene M3804RWP; CNTs – углеродные нанотрубки, Arkema Graphistrength® C100) и гибридные – LLDPE-CaCO₃-C (CaCO₃ – кальцит, OMYACARB 2-KA; C – технический углерод (сажа) марки N330).

Часть заготовок для РКМУЭ (PET-G/ABS, PET/ABS) диаметром 15 мм и длиной 50 мм изготавливали методом послойного наложения расплава (FDM-процесс). FDM-процесс осуществляли с использованием 3D-принтера Flashforge Creator pro. Другая часть вырезалась из цилиндрических прутков, получаемых экструзией предварительно под-готовленных гранулированных компаундов (LLDPE-CaCO₃-C) или после смешения компонентов в расплаве (LLDPE/CNTs). РКМУЭ выполняли по маршруту D + C [10] при

интенсивности деформации $\Delta\Gamma$ = 0,83, величине накопленной деформации *e* до 8,5 и скорости экструзии V = 0,6 мм/сек. Температуры экструзии T₂ составляли 60 °C (LLDPE/CNTs), 135 °C (PET/ABS), 95 и 120 °C (PET-G/ABS) и 75 °C (LLDPE-CaCO₃-C).

Структуру полимерных композитов анализировали с помощью сканирующей электронной микроскопии (СЭМ) (JEOL JSM-5500 LV) при ускоряющем напряжении 10 кВ.

Вязкоупругие характеристики исследовали методом динамического механического анализа на приборе DMAQ800 (TA Instruments). Измерение тангенса механических потерь $tg\delta$, динамического модуля потерь E'' и динамического модуля упругости E' проводили в режиме деформации одинарного консольного изгиба при частоте вынужденных синусоидальных колебаний 1 Гц в интервале температур от 30 до 160 °C со скоростью нагрева 3 град/мин.

Испытания на ударную вязкость по Изоду проводили на маятнике CEAST 6548/000 (энергия 4 Дж). Использовали образцы размером 4 × 6 × 50 мм с надрезом (глубина 2,54 мм, радиус 0,25 мм), полученные механической обработкой исходных и экструдированных заготовок.

Плотность полимерных образцов определяли методом гидростатического взвешивания. В качестве жидкости использовали изооктан. Взвешивание осуществляли с помощью весов Radwag (Польша) с приставкой для определения плотности.

Дифференциальную сканирующую калориметрию (ДСК) выполняли с использованием прибора DSC 2920 (ТА Instruments) при нагревании от 300 К до 420 К со скоростью 10 К/мин. Образцы массой 7–8 мг вырезали из полимерных материалов и размещали в стандартных алюминиевых кюветах. В процессе измерений ячейку для ДСК продували сухим азотом или аргоном (20 мл/мин).

Измерение удельного электросопротивления ρ в продольном и поперечном сечениях, а также образцах, вырезанных под углом ± 45° к продольной оси, проводилось с использованием стандартной четырехзондовой методики с помощью мультиметра Agilent 34 420A.

Испытания на растяжение проводили на универсальной испытательной машине Instron, Model 5582 при комнатной температуре (ISO 527-2). Образцы в форме гантелей длиной 25 мм и диаметром 5 мм (ISO 527-2, type 1BA) вырезали вдоль направления экструзии. Скорость перемещения опорных площадок составляла 1,25 мм/мин. Средние значения модуля упругости *E*, предела текучести σ_y , предела прочности σ_b , деформации текучести ε_y и деформации разрушения ε_b рассчитывали по результатам испытаний не менее 5 образцов на точку.

Микротвердость *H* определяли с помощью микротвердомера ПМТ-3 при нагрузке на индентор 0,5 *H*. Величину анизотропии микротвердости ΔH оценивали по формуле $\Delta H = 1 - (\overline{H}^{\perp}/\overline{H}^{\parallel})$, где \overline{H}^{\perp} , \overline{H}^{\parallel} – средние значения микротвердости в поперечном и продольном сечении экструдатов, соответственно.

На рис. 1, 2 приведены вязкоупругие свойства слоистых полимерных композитов PET/ABS и PET-G/ABS, полученных FDM-процессом и обработанных PKMУЭ. На температурных зависимостях E'' и tg δ исходных образцов композитов наблюдаются известные максимумы, расположенные в интервале температур стеклования (T_c) его компонентов и соответствующие последовательным процессам расстекловывания слоев.

РКМУЭ приводит к изменениям в температурных зависимостях E''и tg δ . При этом характер этих изменений зависит от условий процесса твердофазной экструзии. Проведение РКМУЭ композита PET-G/ABS при температуре 95 °C, что несколько превышает температуру стеклования PET-G, но значительно ниже T_c ABS, смещает максимумы tg δ композита в сторону низких температур, меняет их высоту и соотношение по высоте (рис. 2 в). Также значительно снижается модуль упругости композита (рис. 2, а). Установленные факты могут быть объяснены тем, что T_9 далека от оптимальной. Нагрев до 95 °C достаточен, чтобы создать условия для ориентации цепей PET-G, но низок для эффективной молекулярной вытяжки ABS. Повышение T_9 до 120 °C, соответствующей интервалу стеклования ABS, подтверждает это предположение – наблюдается увеличение E', по сравнению с предыдущим

результатом (рис. 2, а). Кроме того, на зависимости tg δ (*T*) наблюдается только один максимум, положение которого смещается в сторону высоких температур по сравнению с исходным композитом и обработанным РКМУЭ при 95 °С. То же происходит и с *E*" (рис. 2, б). Аналогичный результат наблюдается в случае композита PET/ABS (рис. 1, б, в). Таким образом, применение РКМУЭ в случае слоистых композитов, содержащих слои термодинамически несовместимых полимеров, приводит к гомогенизации такой системы. В результате наблюдается единый процесс расстекловывания материала при нагреве.

Рис. 1. Вязкоупругие свойства композитов PET/ABS, полученных FDM-процессом (1) и после обработки РКМУЭ (2)

Рис. 2. Вязкоупругие свойства композитов PET-G/ABS, полученных FDM-процессом (1) и после обработки РКМУЭ:

Рис. 3. СЭМ-изображение поверхности разрушения композита PET-G/ABS, полученного FDM-процессом (а) и обработанного РКМУЭ (б)

Изучение поверхности разрушения композита PET-G/ABS показало, что в исходном состоянии в материале наблюдаются четкие границы между слоями компонентов (рис. 3).

2018. № 1 (46)

2018. № 1 (46)

В экструдированном композите уже не существует таких границ, а поверхность разрушения свидетельствует о прохождении в нем процессов ориентации, на что указывает ее характерный рельеф (рис. 3, б). Он свидетельствует о более высокоэнергетическом механизме разрушения по сравнению с недеформированными образцами.

Изменения в структуре композитов под действием РКМУЭ отражаются на их свойствах. Так, в композите PET-G/ABS наблюдается рост плотности с 1,086 г/см³ (исходный образец) до 1,182 г/см³ (РКМУЭ). Ударная вязкость повышается от 11 до 29 кДж/м² (PET-G/ABS) и от 8,7 до 23,5 кДж/м² (PET/ABS).

На рис. 4 приведены СЭМ-микрофотографии композита LLDPE/CNT_s, полученного путем смешивания в расплаве и последующей РКМУЭ. Смешивание в расплаве приводит к достаточно однородному распределению агломератов из нанотрубок. С ростом концентрации наполнителя от 5 до 10 мас.% средний размер пучков CNT_s практически не меняется и составляет 220 нм. При этом в 1,7 раза увеличивается плотность пучков CNT_s , характеризующихся большим количеством связей между CNT_s .

Рис. 4. Структура композита LLDPE-5 мас.% CNT_S: a - e = 0; 6 - e = 4.4; B - e = 8.5

После РКМУЭ количество и размер агломератов уменьшается вследствие их разрушения и диспергирования под действием деформации сдвига и высокого давления (рис. 4, б, в). При этом наблюдается формирование 3D-сетки цепочек CNT_S. С ростом величины накопленной деформации улучшается развитость 3D-сетки CNT_S. В отличие от композитов, полученных смешиванием в расплаве, увеличение концентрации CNT_S в случае обработанных РКМУЭ композитов не влечет к ухудшению степени дисперсии CNT_S.

Исходя из дисперсного состояния CNT_S внутри полимерной матрицы, можно предположить, что обработанные РКМУЭ композиты будут иметь лучшие электрические свойства по сравнению с композитами, полученными путем смешивания в расплаве. Удельное электрическое сопротивление уменьшается с повышением содержания CNT_s (табл. 1). Это согласуется с обычным поведением, которое наблюдается в CNT_S-армированных полимерных композитах [11]. Вместе с тем результаты демонстрируют значительное влияние метода обработки на р композита. РКМУЭ модифицированные композиты имеют более низкие значения ρ по сравнению с таковыми, полученными путем смешивания в расплаве. Это может быть связано с тем, что накопление деформации способствует генерации проводящих путей повышенной электропроводности, при этом уменьшенное сопротивление, то есть сеть наполнителя, образованная CNT_S, гораздо более плотная после РКМУЭ, чем та, которая образуется при смешивании в расплаве. При этом ρ уменьшается при увеличении накопленной деформации. Установлено, что значения ρ образцов, вырезанных из экструдатов под углом ± 45 градусов по отношению к продольной оси, то есть в направлениях, не совпадающих с направлениями ориентации фибрилл, незначительно отличаются от таковых, измеренных вдоль и перпендикулярно оси экструдата (табл. 1). Таким образом, можно предположить, что в случае РКМУЭ 3Д проводящая сеть, сформированная как в фибриллах, так и в промежуточных зонах, приводит к улучшенной электрической проводимости независимо от направления ее измерения, то есть для полученных композитов отсутствует анизотропия электрической проводимости.

Таблица 1

s desibilité shekipi téckéé édipétinbienne komitosítéb EEDTE/ et et t						
Материал	е	<i>ρ</i> , Ом·см	<i>ρ</i> , Ом·см			
		поперечное сечение	продольное сечение			
LLDPE	0	$2.0 \cdot 10^{15}$	$2.1 \cdot 10^{15}$			
LLDPE-5мас.%CNTs	0	$1.0 \cdot 10^{10}$	$1.1 \cdot 10^{10}$			
	4.4	$1.3 \cdot 10^8$	$1.0 \cdot 10^8$			
	8.5	$0.8 \cdot 10^7 / 0.9 \cdot 10^7 *$	$0.7 \cdot 10^7 / 0.9 \cdot 10^7 *$			
LLDPE-10мас.%CNTs	0	$1.2 \cdot 10^7$	$0.9 \cdot 10^7$			
	4.4	$0.6 \cdot 10^{6}$	$0.5 \cdot 10^{6}$			
	8.5	$1.7 \cdot 10^{5} / 0.9 \cdot 10^{6} *$	$1.5 \cdot 10^{5} / 0.9 \cdot 10^{6} *$			

Удельное электрическое сопротивление композитов LLDPE/CNTs

* - отклонение на 45° против часовой стрелки от соответствующего направления

Формирование перколяционной сети CNTs не только способствует лучшей проводимости электронов, но также обусловливает повышение механических свойств. Для композитов с различной концентрацией CNTs наблюдается типичное поведение упругих и прочностных характеристик (табл. 2). В общем случае модуль Юнга (*E*) и предел текучести (σ_v) увеличиваются с ростом концентрации CNTs. Увеличение модуля Юнга обусловлено переносом нагрузки из полимерных цепей на нанотрубки. Повышение предела текучести обусловлено цепями молекул LLDPE, прилипающими к поверхности нанотрубок, которые улучшают взаимодействие и перенос нагрузки между LLDPE и CNTs. Эти же процессы приводят к увеличению ударной вязкости α композитов. ε_b с ростом концентрации CNTs уменьшается, поскольку образование крупных агломератов CNTs ограничивает деформируемость полимерных цепей между ними. Однако улучшение дисперсии CNTs при РКМУЭ подавляет ограничивающий эффект. Композиты LLDPE-CNTs после РКМУЭ демонстрируют более высокие E, σ_{v}, α и ε_{b} в сравнении с полученными смешиванием в расплаве. Это также связано с образованием более однородной сетки CNTs с улучшенной степенью дисперсии частиц CNTs. Значительное повышение прочности и ударной вязкости с ростом е свидетельствует о том, что формирование ориентированной структуры вносит существенный вклад в улучшение механических характеристик.

Таблица 2

Wexann leekne ebouerba komilosuitob LEDI L/ CIVIS							
Материал	е	<i>E</i> , MΠa	$σ_y$, ΜΠα	$\varepsilon_b, \%$	α , кДж/м ²		
LLDPE	0	192 ± 15	$12,2 \pm 1.6$	220 ± 10	30 ± 3		
	8.5	287 ± 19	$16,6 \pm 1.4$	190 ± 15	48 ± 2		
LLDPE-5мас.%CNTs	0	247 ± 16	$14,3 \pm 1.3$	85 ± 12	60 ± 4		
	4.4	294 ± 12	$17,3 \pm 1.6$	142 ± 14	98 ± 5		
	8.5	332 ± 15	$18,2 \pm 1.5$	150 ± 15	123 ± 4		
LLDPE-10мас.%CNTs	0	270 ± 17	$14,6 \pm 1.4$	56 ± 10	74 ± 5		
	4.4	330 ± 14	$18,0 \pm 1.7$	132 ± 12	116 ± 5		
	8.5	397 ± 19	$19,4 \pm 1.5$	140 ± 15	137 ± 4		

Механические свойства композитов LLDPE/CNTs

В случае обработанных РКМУЭ композитов LLDPE/CNTs прочность при растяжении и модуль упругости зависят не только от содержания CNTs, молекулярной ориентации, но также и повышенной степени кристалличности χ_c (табл. 3). Видно, что прирост степени кристалличности в случае РКМУЭ модифицированных композитов выше, чем у базового полимера. С повышением *е* температуры начала и конца плавления смещаются в сторону более высоких температур, что свидетельствует о появлении большего количества совершенных кристаллитов [12]. Незначительно увеличивается также температура максимума плавления T_{max} . Эти результаты согласуются с полученными нами ранее в работах [10, 12], где показано, что РКМУЭ обусловливает индуцированную деформацией кристаллизацию и способствует формированию более совершенных ориентированных кристаллитов.

141

Таблица 3

Аврактеристики композитов ЕЕВТ Е/стутз, полу тепные из данных дек					
Материал	e	χ_c	T_{max}, \mathbf{K}		
LLDPE	0	60	400.1		
	8.5	72	407.0		
	0	55	400.5		
LLDPE-5mac.%CNTs	4.4	60	401.9		
	8.5	70	405.0		
	0	48	396.1		
LLDPE-10мас.%CNTs	4.4	55	398.0		
	8.5	65	402.2		

Характеристики композитов LLDPE/CNTs, полученные из данных ДСК

На рис. 5 приведены СЭМ-микрофотографии композита LLDPE-CaCO₃-C, полученного путем экструзии расплава и последующей РКМУЭ. Видно, что РКМУЭ обусловливает фрагментацию частиц CaCO₃, их измельчение, фибриллизацию граничного слоя и полимерной матрицы.

Рис. 5. Структура композита LLDPE-40 мас.%СаСО₃-20мас.%С: а – исходное состояние, б – после РКМУЭ

Таблица 4

Материал	$\overline{H}^{ot},$ МПа	$\overline{H}^{\scriptscriptstyle \parallel}$, МПа	ΔΗ
LLDPE+20мас.%CaCO3 + 20мас.%C	39,7/48,5	43,0/51,3	0,077/0,054
LLDPE +20 мас.%CaCO3 + 30 мас.%C	38,4/51,4	41,0/52,4	0,063/0,019
LLDPE +40% мас.CaCO3 + 20 мас.%С	49,0/57,2	51,0/58,8	0,039/0,027

Микротвердость композитов LLDPE-CaCO₃-C

Исходное состояние/после обработки РКМУЭ

Формирование фибриллярной структуры в композитах LLDPE-CaCO₃-C сопровождается увеличением степени кристалличности и образованием более совершенных кристаллитов. В частности, для композита LLDPE-40 мас.%CaCO₃-20мас.%C χ_c повышается от 0,33 до 0,51, незначительно растет температура плавления (от 119,5 до 120,7 °C). В то же время плотность после РКМУЭ снижается от 1,453 до 1,380 г/см³. Наблюдаемый при этом рост микротвердости (табл. 4) может быть обусловлен формированием ориентированной структуры полимерной матрицы и увеличением степени ее кристалличности.

выводы

Равноканальная многоугловая экструзия является эффективным способом структурной модификации полимерных композитов различной архитектуры и открывает новые возможности в управлении их морфологией и свойствами:

– для слоистых композитов PET/ABS и PET-G/ABS, полученных FDM-процессом, показано, что PKMУЭ позволяет улучшить свойства композиций из термодинамически несовместимых полимеров – повышает плотность, ударную вязкость, динамический модуль упругости. При этом наблюдается единый процесс расстекловывания материалов при нагреве; – в случае полимерных нанокомпозитов LLDPE/CNT_S PKMУЭ способствует улучшению дисперсии наполнителя и формирует упрочненную LLDPE полимерную матрицу с 3Dпроводящей сетью CNT_S. Последняя обусловливает повышение электрической проводимости, не вызывая ее анизотропии. Одновременно за счет улучшения степени дисперсии наполнителя, молекулярной ориентации полимерной матрицы и повышения степени ее кристалличности РКМУЭ способствует увеличению модуля Юнга, предела текучести, относительного удлинения и ударной вязкости;

– у гибридных полимерных композитов LLDPE-CaCO₃-С значительно повышается микротвердость и снижается степень ее анизотропии вследствие формирования ориентированной структуры полимерной матрицы и увеличения степени ее кристалличности.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Yaraman K. Ja. Polypropylene layered silicate nanocomposites / K. Ja. Yaraman, S. Kumar // in Polymer Nanocomposites. – Cambridge, Mass, USA: Woodhead Publishing. – 2006. – P. 130–151.

2. Jang B. Z. Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review / B. Z. Jang, A. Zhamu // J. Mater Sci. – 2008. – Vol. 43. – P. 5092–5101.

3. Beloshenko V. A. Effects of equal-channel multiple-angular extrusion on the physical and mechanical properties of glassy polymers / V. A. Beloshenko, A. V. Voznyak, Y. V. Voznyak // Journal of Applied Polymer Science. – 2015. – Vol. 132, N 27. – P. 42180–42187.

4. «Invar Effect» in Extruded Crystallizable Polymers / V.A. Beloshenko, A.V. Voznyak, Yu.V. Voznyak, S.V. Prokhorenko // Doklady Chemistry. – 2013. – Vol. 449, № 6. – P. 88–90.

5. Beloshenko V. A. Specific features of plastic flow of biaxially oriented flexible- chain semicrystalline polymers / V. A. Beloshenko, A. V. Voznyak, Yu. V. Voznyak // Doklady Chemistry. – 2014. – Vol. 457, № 4. – P. 117–119.

6. Tribological Properties of an Antifriction Polymer Modified by Severe Plastic Deformation / V. A. Beloshenko, A. V. Voznyak, Yu. V. Voznyak, A. V. Kupreev // Doklady Chemistry. – 2016. – Vol. 466. – P. 25–28.

7. Processing of Polypropylene-Organic Montmorillonite Nanocomposite by Equal Channel Multiangular Extrusion / V. A. Beloshenko, A. V. Voznyak, Yu. V. Voznyak, L. A Novokshonova, V. G. Grinyov, V. G. Krasheninnikov // International Journal of Polymer Science. – 2016. – Vol. 2016. – P. 8–16.

8. Effect of simple shear induced orientation process on the morphology and properties of polyolefin/graphite nanoplates composites / V. A. Beloshenko, A. V. Voznyak, Yu. Voznyak, L. A. Novokshonova, V. G. Grinyov // Composites Science and Technology. – 2017. – Vol. 139. – P. 47–56.

9. New approach to production of fiber reinforced polymer hybrid composites / V. Beloshenko, Yu. Voznyak, A. Voznyak, B. Savchenko // Composites Part B: Engineering. – 2017. – Vol. 112. – P. 22–30.

10. Beloshenko V. A. Control of the mechanical and thermal properties of semicrystalline polymers via a new processing route of the equal channel multiple angular extrusion / V. A. Beloshenko, A. V. Voznyak, Y. V. Voznyak // Polym. Eng. Sci. – 2014. – Vol. 54, N_{2} 3. – P. 531–539.

11. Moniruzzaman M. Polymer Nanocomposites Containing Carbon Nanotubes / M. Moniruzzaman, K. I. Winey // Macromolecules. – 2006. – Vol. 39. – P. 5194–5205.

12. Beloshenko V. A. A microcalorimetric study of crystallizable polymers subjected to severe plastic deformation / V. A. Beloshenko, Yu. V. Voznyak, V. M. Mikhalchuk // Polym. Sci. Ser. A. – 2014. – Vol. 56. – P. 269–274.

Белошенко В. А. – д-р техн. наук, проф., дир. ДонФТИ; Возняк А. В. – канд. физ.-мат. наук, доц., зав. каф. ДонНУЭТ; Возняк Ю. В. – канд. физ.-мат. наук, ст. науч. сотр. ЦММИ; Дмитренко В. Ю. – канд. техн. наук, уч. секретарь ДонФТИ; Савченко Б. М. – д-р техн. наук, проф. КНУТиД; Чишко В. В. – канд. техн. наук, ст. науч. сотр. ДонФТИ.

ДонФТИ – Донецкий физико-технический институт им. А. А. Галкина НАН Украины, г. Киев.

ДонНУЭТ – Донецкий национальный университет экономики и торговли им. М. Туган-Барановского, г. Кривой Рог.

ЦММИ – Центр молекулярных и макромолекулярных исследований, г. Лодзь, Польша. КНУТиД – Киевский национальный университет технологий и дизайна, г. Киев.

E-mail: chishko@ukr.net