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The technique for development and reduction of discrete dynamics models of frames is
presented. Construction of the models is carried out using finite element method, generalized
coordinates and tools of modern computer software. Parametric resonance in a statically
indeterminate frame caused by external excitations is investigated. Main instability domains of the
frame are determined.
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The problem under consideration is parametric resonance in statically
indeterminate frames caused by external influences. To obtain equations
describing parametric oscillations of frames one can use equilibrium equation
for static stability problems taking into consideration inertial forces and some
components of frame unexcited state which may depend on time. It is believed
that the ratio between the excitation frequency and the lowest eigenfrequency
of the frame in the unexcited movement allows to apply quasi-static
approximation and to neglect some displacements while determining the
unexcited stress-strain state of the frame.

Operator equation which describes parametric oscillations of statically
indeterminate frame [1] is

M(e)+] K=o+ (1)) Kg | 0(1)=0, (1)
where M , K are inertial and elastic operators, IgG is component of operator
of parametric forces presented in the equation of quasi-static equilibrium.
Domain of the solutions v(x,¢) of equation (1) coincides with the domain of

definition of the operatorl?. Operators]\} K ,I?G are positive definite.

Equation (1) is written for the case when the parametric force are specified up
to two factors, one of which o describes the static component of external

influence while the second Bf (t) corresponds to a component that varies in

time.
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For numerical computation the transition from the operator equation (1) to
discrete dynamic model is carried out using the finite element method. Discrete
dynamic model is written as ordinary differential equations

M (t)+] K~(a+Bf (1)) K | (1)=0, )
where i(¢)=(u,(¢),uy(¢)...,u, ()] is the vector of nodal displacements,

M ,K ,K; are matrix mass, stiffness matrix and geometric stiffness matrix

respectively. Reducing of the discrete model (2) is performed with the help of
the method of generalized coordinates taking into account the characteristics of
parametric excitation.

Nontrivial solution of system (2) can be approximated by the expression

() =13(t) (3)

where the 7 x m — matrix ¥ =(v,v,,...,v, ) is determined by the system of

m

basis vectors {77, and (¢)=(y,(¢) v, ()., ()
coordinates. Substituting (3) in the (2) we obtain the system of m ordinary

T . .
is vector of generalized

differential equations in terms of the vector y(¢)=(y,(t) y,(¢)....y,, (t))"

components
VTMV;(t)+[VTKV—(oc+Bf(t))VTKGV} 7(1)=0. (4)
System (4) may be written as
M*;(x){K*—(a+;3f(x))1<;];(t)=o, (5)

where reduced mass matrix M *, stiffness matrix K~ and geometric stiffness

. * . . .
matrix K; of dimension mxm are given by

*

M =v'MV, K =V'KV, K;=VTK;V .

We accept m to be much less than n (m << n) The adequacy of the
model (5) is verified by examining internal convergence with increase of m or
by use of other basis vectors.

In this paper the development of the reduced model (5) runs using finite
element analysis program NASTRAN [2]. Since this program, as well as other
standard programs do not contain procedures for determining the reduced
matrices M, K", K 2 , one can take advantage of a procedure for estimating the
system response to a given field of displacement v, i.e. the procedure for
computing the vector Kv, where K is stiffness matrix of a structure in a
whole. The vectors Mv, K;v can be determined applying such a procedure.
Also the procedures for solving the inverse problem of static equilibrium as
well as procedures for modal and buckling analysis are used.



ISSN 0132-1471. Omip marepiais i Teopis criopys. 2014. Ne 93 93

The governing matrix equation for modal analysis of a structure is
(K—sz) 9=0. (6)
Let o, (kzl, 2,...,m1) be a vector of the discrete model eigenfrequencies
and @ =(Py, Poges - » Py )T (k=1,2,...,m,) be a set of its eigenvectors. Then

the orthogonality conditions of the eigenvectors {g,}." are

p— T p—
(p / M(P 203 . .
_] T _l (l # .]) °
¢, Ko, =0.
Using a subset of the eigenvectors {61}:3 the approximated displacement
field may be expressed as
my _
VY a;. (7
i=1
where
=T
; Kv
a; ::’?—_ . (3)
¢ Ko;
Using (6) one may obtain
-1 -
Mo;=— Ko,. )
®

i
Furthermore, left multiplying both side of (7) by mass matrix M and taking
into consideration (9) we get

m _ m a. _
Mv=} aM¢,=) — Ko, (10)
i=1 i=l @;

The procedure for solution of static buckling problem may be used for
computing the vector K;v . The problem of frame stability may be expressed
as

(K+1Kg )y=0. (11)

Let A, (k=12,...,m,) be critical values of (11), \T/kz(\Tll, Yoy ooy \ijz) is

a set of buckling eigenvectors. Due to assumptions made above about

properties of the matrices K and K, these vectors are orthogonal

‘I_f_/TKG‘I_fi =0,

_ i#)). (12)
W_,-TK\VI- =0.
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Using a subset of buckling eigenvectors {\T/l.}m2 displacement field v can

il
be expressed approximately as

p— m2 p—
vy by, (13)
=1
Similarly to (10) one can write
my .
KGV;Z—b—IK\TJI. , (14)
a M
where
=T
 Kv
b=t (15)
Vi Ky,

Thus the problem of determining the vector K;v can be regarded as
solved.

Next we can introduce subset of vectors {@; }."

" and {y,}; of the same

1
dimension m ,i.e. m; = m, =m . Using the above equations one can write
MV =KoQ 'O KV, (16)
KV =K¥YA WKV, (17)
where the matrices ®=(¢, 9,,..,¢,) and ¥Y=(y,, y,, .., y,) have
dimension nxm, whereas matrices Q' =diag((of2,0)§2,...,o);12) and
A =diag(7\,f2,7\,§2,...,7\.;12) are diagonal.

Reduced mass matrix M, stiffness matrix K and geometric stiffness
matrix K ; are calculated using relations

M =VTKoQ 'O KV, (18)
K'=VTKv, (19)
K;=VTKYAWTKY. (20)

This paper mainly deals with the reduction of equations which describe
statically indeterminate frame parametric oscillation excited by the influence of
vertical axial loads. Geometrical and mechanical characteristics are taken as
follows

— for the columns

F=0.007569m", [ =I,=4.7741x10° m*, J=8.0617 x10° m*,
E=2.06 x10"" Pa, 1=0.3, p=7800 kg/m’;
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— for the horizontal beams
F=0.007569 m*, I =1,=4.7741x10° m*, J=8.0617 x10° m*,

E=1.0 x10" Pa, n=0.3, p=100000 kg/m>.

Finite element model of the
frame is shown in Figure 1. Model
contains eight nodes and nine
spatial beam elements with six
degrees of freedom at each node. .
The frame is rigidly attached to the e 34
surface. Displacements along the Z
axis and rotation around the X axis
are restricted at others nodes. :

Parametric oscillation of the 34 3
frame with rigid horizontal beams
can be described with the reduced
system of equations (5) using only

34 34

. . . 2 — S S
one spatial variable - linear 123455 123455
horizontal displacement along the ) .
X axis Figure 1. Finite-element model of the frame

M ()4 K ~(a+Bf (1)) Kg [%(2)=0, 1)
where  X(¢)={x,(¢)x,(¢) x;(¢)}" is a displacement vector. The parametric

excitation is given by P(t)=FR+F=a+Bcosdt and 6 is the excitation

frequency.

The tools of the FEM program NASTRAN is used to compute the reduced
mass matrix, stiffness matrix and geometric stiffness matrix.

The generalized eigenvalue problem (6) was solved using Lanczos's
method. Hereinafter only the first three eigenmodes shown in Figure 2 are
taken into account to reduce the computation. Note that all the three
eigenmodes are antisymmetric.

The numerical values of the eigenvectors elements are given below.

0 0 0
—0,004103 —0,010091 +0,009256
—0,008458 —0,005731 —0,009994
_ —0,010966 _ +0,008502 _ +0,004405 22
N A (s AP SR o Rt M)
—0,004103 —0,010091 +0,009256
—0,008458 —0,005731 —0,009994

-0,010966 +0,008502 +0,004405
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Buckling analysis of the frame loaded by axial forces (Figure 1) was
performed in accordance with equation (11) using Lanczos's method. Critical
loads A, A,, A, and correspondent buckling modes ,, y,, y; are depicted

in Figure 3.

o, = 48495 o, =14,6125" o, = 23,1465

Figure 2. Eigenmodes and eigenfrequencies of the frame

A, = 306729.8 N A, =438837,7N A, =859537,6N

Figure 3. Buckling eigenmodes and corresponding critical values

The numerical values of the buckling eigenmodes are as follows

0 0 0
+0,636694 -0,077949 -0,311108
+0,949051 -0,022808 +0,719202
_|+10 _ o _]-0,002823|  _ | |+1,0 (23)
{Wnl}: 0 ’ {Wn2}: 0 ’ {Wn3}: 0 .

+0,636694 -0,077949 -0,311108
+0,949051 -0,022808 +0,719202
+1,0 -0,002823 +1,0

Note that buckling eigenmodes are antisymmetric as well.
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The reduced mass matrix is calculated using equations (18) and is
approximately the unit matrix

M = diag[1,008058; 1,005287;1,001766], (24)
which indicates that eigenvectors are normalized with respect to the mass
matrix.

Solving the inverse static problems one can determine the structure
response K@,, K¢,, K¢, to given field of displacements in the form of modal
eigenvectors as well as response Ky, Ky,, Ky, to displacements in the
form of buckling eigenmodes.

The reduce stiffness matrix K~ is computed in accordance with (19):

23,5954 0 0
K'=|0 213,6121 0 ) (25)
0 0 535,5765

The matrices ®’ K'Y and W' K® were obtained on purpose to compute
the geometric stiffness matrix K 2 accordingly to equation (20):

[—2504,164 0 0 ]
OTKY = 0 7703,229 0 , (26)
0 0 -14189,69 |
[—2443,251 0 0 ]
YIKD = 0 7548,467 0 ) (27)
0 0 -14163,09 |
The reduced geometric stiffness matrix is
0,66x10™ 0 0
K = 0 3,34x10% 0 ) (28)
0 0 3,59x10™

The reduced dynamic model of parametric oscillations of statically
indeterminate frame is written as a system of three uncoupled second order
differential equations

5 (1) + 4,858 1-0,279(a+Beos 0r)x10° | x; (1)=0,
% (1)+14,6157 [1-0,156(a+Beos01)x10° |, (1)=0, (29)

)=0
5 (1)+23,1437[ 120,067 (ot +Bos 0r)x10° |y (1)=0
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Instability domains are areas in which any initial deviation increases
indefinitely with time, i.e. undeformed shape of the frame is dynamically
unstable. To determine the boundaries of the main domains of our frame
instability the Bolotin’s equation [1] can be applied

* 1 * 1 A2, 0%
[K (aiEB)KG ZO M }—0. (30)
The parametric oscillations become unstable when periodic or almost
periodic solutions with periods 2T of the differential equations (29) exists. It is
known that main resonances occur at frequencies of external load twice the
eigenfrequencies of frame loaded by axial loads [3, 4].
Let us consider the dynamic stability of the frame under parametric load

with static component 0c=[0; 0,25; 0,5]7\, and dynamic component

B=[0,001+0,5]7\.. The main instability domains near the first three
eigenfrequencies are shown in Figure 4.
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Figure 4. Main instability domains

The instability tongues in this figure are shaded. Digits 1, 2, 3 indicate the
areas defined for the parameter a value equal to 0, 0,25 and 0,5 respectively.
One can see that if the static component of parametric excitation is absent

(a=0) then the instability region starts with a frequency of disturbing force

that is twice the unloaded frame eigenfrequency. When the static component
has nonzero value then the parametric resonance begins with the frequency of
disturbing force which is twice the eigenfrequency of the frame loaded with
axial loads. The width of the main instability domains decreases with
increasing of eigenfrequencies. Contrariwise the width of the resonance
tongues increases slightly when the static component takes larger values.
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Bopowna 10.B., JIyk’anuenko O.0., Kocmina O.B.
IMAPAMETPUYHUI PE3OHAHC B CTATUYHO HEBU3HAUYBAHUX PAMAX
IpencTaBieHo METOMUKY MOOYIOBH PEIyKOBAaHHX JIMCKPETHUX JUHAMIYHHX MOJEICH pam i3
3aCTOCYBaHHSM METOJy CKiIHYCHHHX CJIEMEHTIB, y3araJlbHeHHX KOOPIMHAT i MpOIeayp Cy4acHOro
nporpaMHoro 3abesnedeHHs. JlocnmipkeHa CTIMKICTh MapaMeTPUYHUX KOJNUBAHb CTATHYHO
HEBHM3HAUyBaHOI paMH, CHPHYMHEHHX 30BHIIIHIM BIUIMBOM. BmH3HaueHi ToJoBHI oOnacti
JIMHAMIYHOT HECTIMKOCTI paMH.
Karo4oBi ciioBa: napamerpuuHe 30y/DKCHHS, PeAyKOBaHa MOJIelb, ()OPMH BTPATH CTIHKOCTI,
00J1acTh JMHAMIYHOT HECTIMKOCTI.

Bopona FO.B., Jlyxvanuenxo O.A., Kocmuna E.B.
IMAPAMETPUYECKUI PE3OHAHC B CTATUUYECKU HEOIIPEJAEJUMbIX PAMAX
IlpencraBieHa MeETOAMKA TMOCTPOCHHS PEIyLUPOBAHHBIX JUCKPETHBIX JIWHAMHYECKUX
Mojieneil paM ¢ TPUMEHEHHEM METOJa KOHEYHBIX 3JIEMEHTOB, OOOOLICHHBIX KOOpPAWHAT M
IpOLIElyp  COBPEMEHHOr0  IporpaMMHOro  obecredenus. VccrenoBaHa — yCTOHYHBOCTB
napaMeTPUYeCKUX KONeOaHWH CTAaTHYECKH HEOMPEACIUMON paMbl, BBI3BAHHBIX BHEIIHUM
B030YxIeHHeM. Onpe/ie/ieHbl TIaBHbIe 00JIaCTH AUHAMUYECKOM HEYCTONYHUBOCTH PaMbl.
KarueBble clioBa: TapaMeTpHueckoe BO30YXKICHHE, pelylHpOBaHHAS MOJCTb, (OPMBI
MOTEPH YCTOWIUBOCTH, 00J1aCTh TUHAMHYECKON HEYCTOWIMBOCTH.



