66 ISSN 2410-2547. Omip matepiaiis i Teopis copy. 2015. Ne 96

UDC 539.3

METHOD OF COMPENSATING LOADS FOR SHALLOW SHELLS.
VIBRATION AND STABILITY PROBLEMS

Tran Duc Chinh'
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Based on the integral representation of the displacements functions through Green's functions,
the author proposed a method to solve the system of differential equations of the given problem.
The equations were solved approximately by reducing to algebraic equations by finite difference
techniques in Samarsky scheme. Some examples are given for calculation of eigenvalues of
shallow shell vibration problem, which are compared with results received by Onyashvili using
Galerkin method.

Introduction

The stability and vibration problems of shallow shells have been studied by
many scientists [1], [2]. The usual approaches for those problem were based on
the partial differential equations of high order with unknown functions being
displacement w and stress ¢ functions. Integrating these equations by
analytical method usually are too difficult because of the high order of the
differential equations even if for bending problems [3].

On the base of the integral representation of displacement functions through
Green functions the author has proposed a numerical method for solving the
differential equations of the problem. These equations were solved
approximately after producing them into linear algebraic equations by finite
difference technique.

Governing equations
Vlasov governing differential equations for thin shallow shell with variable
curvatures in the form of the three displacements (u,v,w) have been employed

[4.5]
Ly (@) + Ly (7)) + Lis (W) +[(1= V2) ] ER][ Xy —m(%) /9 )] = 0;
Ly (@) + Lyy (V) + Loy (W) +[(1= V2) / ER][Yy —m(3*V /9 %)] = 0;
Ly (i) + Lyy (7) + Lyy (W) +[(1= V?) | ER)[Zy —m(d*W/ 9 £*)] =0,
where L;,, L3, ,..., L3; — linear differential operator of the shell, 4 — thickness

of the shell, X,.Y;,Z, — harmonic surface loads located on the shell, m —

density of the mass for an unit area, £ — Young’s modules, v — Poisson
coefficient.
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For convenience in integration and computation, the dimensionless
Cartesian coordinates are used. In the case of free vibration X=Y;,=Z,=0.
The three displacement it he governing equations are assumed in the form
LT(X,Y,I) = u(X,Y) sinwt
V(X,Y,t)=v(X,Y)sinot ;. (1.1)
w(X,Y,t)=w(X,Y)sinot
Substituting the above into the governing equations for free vibration of the
shells gives
Ly )+ Ly (v) + Lz (w) = Au

Ly (u)+ Lyy (V) + Lyz(w) = Av ¢ (1.2)
Ly )+ Ly (v) + L3z (w) = Aw
In the case of elastic stability the governing equations of the shell are
Ly (i) + Ly (%) + L3 (W) =0,
Loy (@) + Lyy (V) + Loz (W) = 0, (1.3)
Lyy (@) + Ly (9) + Ly3 (W) = X" Ly (),
where operators in dimensional coordinates are [4,5]
Ly =9 /x? +[(1-v)/2](0? /0Y?); Ly =[(1+v)/2](0? /0xaY);
Ly =97 /9y? +[(1-v)/2](0* 1ax?);
Liy=—(k +Vk,)(9/0X)—kpp (1-v)(9/9Y);
Lyy =—(ky + VK )(0/0Y)— k5 (1-v)(9/ 9X);
Lyy = Lip; Ly = Liz; Ly = Los;
Lyy =(D/C)A* + K +2Vkiky +5 +2(1-v) ks

. 2 2
with k& :(8 %Xz); ky =9 %Yz; ki =32%X3Y

and Z =Z(X,Y) — the middle surface equation of the shell.
Besides

()20 S 5 ) 9

xz—m[(l—v /EH}co N :[1—\/ /EH}N

D= ER /[12(1—#)} : C:Eh/[(l—vzﬂ.
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Method of analysis

The method to be presented in based on integral representation of the
displacement functions through Green functions, by which the governing
differential equations of the problem are converted into linear algebraic
equations by using finite difference technique.

According to this method, the region of the shell is divided into a set of

orthogonal lines X =X, (m = l,...,M) and Y =7, (n = 1,...N) .
The highest derivatives of u, v, win Egs (1.2) and (1.3) are denoted by:
9? u/8X2 =—k(X.Y); 9? v/8X2 =-s(X.Y); o w/8X4 =-p(X.Y);
Pufor? =-d(X,Y); 3*v/av? =—1(X,Y); o* w/ov* =—¢(X,Y).
With the help of integrating along the line Y =Y,, Eq. (2.1) can be
transformed [6] into

f(XﬂgYn)k(C:Yn)dC;

e(X.5Y, )5(5.7,)dG; 2.2)

1

u=]
0
1

v=]
0

w=a(X.08, (5.7, )t
0

where f, e and a are Green functions associated with the (2.1) and the
boundary conditions correspond to a clamped shell as follows
u=v=w=w'=0at X=0 and X=1.

The integral equations (2.2) can be reduced to a summation by using
Simpson’s rule and for the numerical integration and by using second degree

interpolation L to relate the functions &, s and p at point (&, Yn) to those at
points (X, Y,). Then Egs (2.2) become
U, = fnaLnkn = Fn kn
v, = fyal,k, =E, k, ¢. (2.3)
Wp = fnaLnkn = An kn
For all the lines paralleled to the X — axis, E£gs. (2.3) in matrix notation are
u=Fk, v=Fk, w=AP.
Similarly, Egs. (2.1) can be reduced to
u=T"HTd" =H d,
v=T'GTd" =G -d,
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w=T'BTd" =B-d,
where * indicates the sequence of the nodal point along the lines paralleled to
X —axis; T — a unitary transformation matrix to rearrange the nodal points in
the Y —direction to the same order as those in the X —direction.
The required derivatives of u,v and w in Egs. (1.2) and (1.3) are obtained

by using the derivatives of Green’s functions and the procedure of the
differential operators. For u, for example, the derivatives are

=Fhk=FFu;
w =HH 'u;
u” =—k=-F
u” =-d=-H u;
w'=FF'"HH "u .
In the similar way, the derivatives for v and w can be obtained.
Now we consider the shallow shell for which the middle surface equation is

Z(x7) = | (X=a)*fa +(r =) 17 =(X =a)* (v =)' [[ab?)-1].
By using the dimensionless variables (X =X/ 2a), y=Y/2b we obtain

the differential operators of the shell as follows
=4d’L;, i, j,=1,2,3,4.

L, =(82/ax J+((0-v)/2)r* (2*/2?):

Ly =((1+v)/2) (0% faxdy) = L

1y = (22 )+ (1-0)/2)2 (2 /a5*);

15y =ar(efa)[?[1-(2x 17 Jov[1- @y -12 o)+
+8(c/a)r(1-v)(2x—1)(2y=1)(9/dx) = L3, ;

iy ==4r(e/a){ [1-v=1)" w2 [1-(2x -1 [} (2/0x)+
+8(c/a)r( =v)(2x=1)(2y —1)(9/ox) = L ;

1y = (12 /45a%)[ (%ot )+ 2r (3% fxap? )+ (0% 0p*) |+

+16(c/a)’ {[l —(2y—l)2:|2 1= (20 1)2}2}+
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w212y =1) 1= (x=1) [#872 (1=v)(2x-1) (2917
Ly =(No /N )+ 2r( Ny, /N, ) (02 foxdy )+ 2 (N, /N, ) 9% [y ;
7»=—4a2m((1—v2)/Eh)0)2; A :((l—vz)/Eh)Ncr; r=afb.

a. Free vibration problem

Substitution of the derivatives of u, v and w in Egs. (1.2) and simplification
will yield to eigenvalue problem

[c-wm]{p"}=o0.
where
Ly L, L u
[C]=1 L3 L3y L35 ¢ {D*}Z Vs
L3y L3, L, w
Ly =—F ' —(1-v)/2)r*H",
L{z=—4(c/a){[l—(2y—l)ﬂ+vr —(2x- 1
+8(l—v) (c/a)(zx l)(2y 1
L3, :((1+v)/2)rF'FlH Ly =—r2G™! ((1 v)
Ly = —4r(c/c) {rz |:l—(2x—l) :| 2}
+8(c/a)r(1—v)(zx—l)(zy—l)AA1;
L) = 4(c/a){r2 [1—(2x—1)2J+v[l—(2y—1)2J}GG—1 +
+8(l—v)(c/a)(Ey—l)(Zy—l)E'E_1 ;
L3y =—(n/48a7 (-4 + 22 47 4'BB ™ + B )+

+16(c/a)’ {[l —(2y—l)2:|2 1= (20 1)2}}+
w202 [1=(2y=1) |[1=(20=1) [#872 (1=v)(2x-1) (29 1)

\_/%r—‘
AN
h;._‘
+



ISSN 2410-2547. Omip matepiainis i Teopis copy. 2015. Ne 96 71

b. The elastic stability problem
In the similar way, Egs. (1.3) can be solved for determining the buckling
loads. The differential operators L'; (i,j = 1,2,3) are the same as formulated in
Egs. (2.4), and
Liy—(N, /N, ) 4”4 +2r(N,, /N, ) 4’4" BB~ +7* (N, /N, ) BB™".
Substituting L' ,..., L34 into Egs. (1.3) reduces them to linear algebraic
equations:
[c*-n1]{w}=0.
For non-trivial solution of w
[c=n"1] =0,
where
* -1 ’ 1y ’ ’ 17, -1 r =17, ’ —1y=15
C ==L73 L1y L (Lzz —L21L11L12) :(L21L11L13—L23)—1134L11L13+
-1

S0 (L= Lo LiLh) (LaLilLh)  (LoLiLly=Lsy )+ L.

Results and discussions
The free vibration problem was solved for the shallow shell, the middle
surface equation of which is

Z= c|:(X—a)2/22 +(Y—b)2/b2 +(X=bY (X—b)z/(azbz)—l}
X =2ax; Y=2by.

The present results are based on the following dimensions and properties of
the shell @ = b=22,8 cm, h = 0,1587 cm, E=3,3.10° KN/em’, v = 0,4. The form
of Green function f, e and a was given by Korenev B.G. [6]

The convergence of the solution for free vibration was shown in Table 1. It
is obviously that the convergence is more rapid for low ratio (¢/4 = 5) than for
higher ratio (c/h=16). It is found that the main factors affecting on the

convergence are the mesh size, the rise of thickness ratio, boundary conditions
and the degree of Green function used in the solution. It Table 2 the
comparison of the results of minimum natural frequency of the shell with
Galerkin solution was given.
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Table 1
Mesh R=a/b=1,0
NxN c/h=15 c¢/h=10
Mode 1 mode 2" mode 1* mode 2" mode
3x3 28,031 28,031 70,476 70,476
5x5 37,333 40,419 69,677 72,204
7x7 41,288 41,822 82,608 73,904
9x9 40,865 42,171 49,543 81,466
11x11 40, 793 41,924 82,998 83,427
13 40,815 42,210 83,526 84,122

Remarks : 1* mode — symmetrical with respect to the x and y directions; 2"? mode —

anti-symmetrical with respect to the x and y directions; Multiplier (l/ a’ ) JD/ M

Table 2
Case Method w
c/h=0 Present method 9,0042
ab=1 Galerkin method [2] 9,0359
c/h=5 Present method 22,536
a/b=0,5 Galerkin method [2] 26,985
c/h=5 Present method 40,815
a/b=1,0 Galerkin method [2] 42,501
c/h=10 Present method 61,053
a/b=1,0 Galerkin method [2] 81,294
c/h=16 Present method 83,426
ab=1 Galerkin method [2] 133,255

Multiplier (l/ a’ L/D/ M
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