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In recent years in nonlinear dynamics particular attention was paid to studying the chaotic
behaviour of dynamical systems and their routes to chaos. Sometimes this route may be intricate. We
watched such intricate route to chaos when studying the quasi-periodic route to chaos in strongly
nonlinear non-smooth discontinuous vibroimpact system that was two-body 2-DOF one. After
Neimark-Sacker bifurcation many different regimes replace each other. There are transitional
regimes with inconsistent characteristics among them. We analyze these regimes with continuous
wavelet transform CWT applying. CW T plots confirm just their transition kind and give clear picture
of different frequencies presence in time series and their distribution in time.
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1. Introduction

At present chaotic dynamics is one of the most interesting and investigated
subjects in nonlinear dynamics. Now it is well known that just deterministic
chaos is not an exceptional mode of dynamical systems behaviour; on the
contrary, chaotic behavior occurs in many dynamical systems in mathematics,

mechanics, engineering, physics, chemistry, biology and medicine. Therefore,
the studying of chaotic dynamics is one of the main ways of modern natural
science development. Now the theory of chaotic vibrations is well developed and
is continuing to develop further [1-3].

Let us underline that dynamical deterministic chaos occurs in entirely
deterministic systems only under the control parameter changing without any
random external influence. And this changing may be very small.

The routes to chaos in nonlinear dynamical systems are of the special scientists’
interest. It is known three main routes to chaos in dynamical systems [1, 3]:

1) period-doubling route to chaos — the most celebrated scenario for chaotic
vibrations, it is Feigenbaum scenario;

2) quasiperiodic route to chaos;

3) intermittent route to chaos by Pomeau and Manneville.

We have studied the quasi-periodic and intermittent routes to chaos in
vibroimpact system in our previous works [4,5] and references therein.

Vibroimpact system is strongly nonlinear non-smooth discontinuous
dynamical system. The studying of its dynamical behaviour has certain
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difficulties because of its non-smoothness and discontinuity. When we are
comparing the quasi-periodic and intermittent routes to chaos in our vibroimpact
system we see that the quasi-periodic route is considerably more intricate then
intermittent one. Different oscillatory regimes replace each other many times
under very small control parameter varying. There are periodic subharmonic
regimes — chatters, quasiperiodic, and chaotic regimes. There are the transitional
regimes which occur between other defined ones. What are the transitional
regimes? They occur in the zones of transition from one regime to another, they
correspond to prechaotic or postchaotic motion. They have the inconsistent
characteristics: their Fourier spectrum fits to the one regime kind, Poincaré maps
— to another. So we cannot say something specified about its kind.

Therefore we decided to test new technique in order to characterize this
multiscale behaviour. This new technique is Continuous wavelet transform CWT.

Wavelet analysis is useful for recognizing periodic and chaotic motions both
in the frequency and time domain. It turned out to be an efficient tool for the
studying of vibroimpact system dynamic behaviour. In particular it permits the
detection of unconformities and other abrupt changes in signal.

In recent years, the wavelet analysis has been applied in many scientific
fields. Much commercial software can present the function of wavelet analysis,
such as Mathcad and Matlab.

The CWT applying for studying our vibroimpact system dynamic behaviour
was very successful one. It was very useful for distinguishing periodic and
chaotic regimes. We have “caught” the intermittency due to its helping [5]. It is
worth to point out that the intermittency finding is not such an easy task. It is
difficulty to discover it by usual ways such as phase trajectories, Poincaré maps,
and Fourier spectra construction, even the Lyapunov exponent estimation. Let us
remind that under intermittency the laminar phases (periodic regimes) alternate
with turbulent ones (chaotic bursts) when the control parameter having the same
value. Just because its Fourier spectrum is board and continuous and all other
characteristics are such as ones under the chaotic motion. But CWT gives the
information about time dependence of the different frequencies. So CWT copes
with intermittency recognizing well. It is the reason for analysis of transitional
regimes with CWT helping.

2. Where the transitional regimes were discovered

We consider the strongly nonlinear non-smooth discontinuous dynamical
system which is two body 2-DOF vibroimpact system (Fig. 1) under periodic
external loading F(¢) = Pcos(wf + @) . Its dynamical behaviour was studied in

details in our previous works [4, 5] and references therein. Its amplitude-
frequency responses in wide frequency range are depicted at Fig. 1 too.

We have watched the quasi-periodic route to chaos, the transient chaos, and
hysteresis effects (jump phenomena) in very narrow frequency range 7.45 rad-s’!
<o <8.0 rad's™". It is the region between points K and L on amplitude-frequency
response where Neimark-Sacker bifurcations occur. At Fig.2 we show the
largest Lyapunov exponent dependence on control parameter that is the
frequency of external loading.
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Fig.1. Vibroimpact system model and amplitude-frequency responses

It is worth to remind that the sign of largest Lyapunov exponent A determines
sufficiently well the kind of oscillatory motion: the negative sign A <O
corresponds to periodic regimes, the positive sign A >0 — to chaotic ones, and
M0 — to quasi-periodic oscillatory regimes. We see sufficiently intricate route to
chaos at this plot. Different oscillatory regimes succeed each other many times
under very small control parameter varying in narrow frequency range. There are
periodic subharmonic regimes with long period and big number of impact per
cycle — chatters, quasiperiodic, and chaotic regimes. The hysteresis effects (jump
phenomena) are observed at two frequency ranges.
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Fig. 2. The largest Lyapunov exponent dependence on control parameter

We see two regions of transitional regimes which occur between other ones.
All of them have the small largest Lyapunov exponents, which are near the zero.
These regimes are similar to one another. All of them have the conflicting
characteristics.

3. Analysis of transitional regimes

Let us have a more attentive look at the transitional regimes. Let us attempt
to use continuous wavelet transform CWT for more precise its determination.
We use software Matlab with Morlet wavelet.

In [5] we showed the view of surfaces of wavelet coefficients (3D plots) and
their projections for periodic and chaotic motion. They had different well-
pronounced views.

Now let us first have a look at the view of quasi-periodic motion at the
wavelet plots. At Fig. 3 we show the characteristics of quasi-periodic regime for
attached body m; under @ =7.51 rad-s™.
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Fig. 3. Phase trajectories, Poincaré maps, wavelet surface projection, and surface of wavelet
coefficients for quasi-periodic regime under @ =7.51 rad's™ (Colour online)

The wavelet plots have not well-pronounced view, they are similar the plots
for periodic motions with long periods and big number of impacts per cycle. It is
logical as the quasi-periodic motion is almost periodic one.

Now let us have a look at the characteristics of the transitional regime under
©=7.61 rad-s'. We show its phase trajectories with Poincaré map and Fourier
spectrum in logarithmic scale at Fig. 4 (for main body m,). Its Poincaré map is
almost closed curve as under quasi-periodic regime, but Fourier spectrum is
board and continuous, such as under chaotic motion. These characteristics are
inconsistent ones. This regime isn’t quasi-periodic, isn’t chaotic one. Maybe its
wavelet characteristics can show its kind more precisely? At Fig. 4 the wavelet
surface projection and surface of wavelet coefficients for this regime are
depicted. We see two high frequencies with strong power and a lot of low
frequencies with very weak power which provide the continuous Fourier
spectrum. They change little in time that provides almost closed curve on
Poincaré¢ map. These plots don’t make idea about this regime more precise one.
But they confirm that this regime does not belong to the kind of quasi-periodic or
chaotic one. It is exactly transitional regime.

Let us have more attentive look at the second region of transitional motions
under 7.815 rad's"'< © <7.90 rad's’. We see the chaotic regimes under o =7.80,
7.81, 7.815 rad-s™. The characteristics for such regime under » =7.815 rad-s™ are
depicted at Fig. 5.
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Fig. 4. Phase trajectories, Poincaré map, Fourier spectrum, wavelet surface projection, and surface of
wavelet coefficients for transitional regime, =7.61 rad-s”, A=0.0027 (Colour online)

These plots have the view which is typical for chaotic motion. Poincaré map
is disordered set of points in limited space. The plots of wavelet characteristics
display two high frequencies with strong power and a lot of low frequencies with
weak power that provide a board continuous Fourier spectrum. It is seen well
that all of them are changing in time.

Then we see transitional (prechaotic) regime under ® =7.82, 7.825 rad-s™.. Its
Poincaré map has the set of separate points, but its Fourier spectrum is board and
continuous one. Its characteristics under m =7.82 rad-s' are depicted at Fig. 6.

And immediately after this we see the chaotic motion under » =7.83 rad-s’
(Fig. 7).

We succeeded in finding chaotic regime only under ©=7.83 rad-s’.
Immediately after it the transitional regimes with sets of separate points at
Poincaré¢ maps and with board continuous Fourier spectra exist under o =7.84,
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7.845, 7.85 rad-s™!, and further till ® =7.90 rad-s'. They are prechaotic or
postchaotic regimes. The characteristics of such regime under @ =7.845 rad-s’!
are depicted at Fig. 8.
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Fig. 5. Phase trajectories, Poincaré maps, wavelet surface projection, and surface of wavelet
coefficients for chaotic regime under o =7.815 rad-s” (Colour online)
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Fig. 6. Phase trajectories, Poincaré maps, wavelet surface projection, and surface of wavelet
coefficients for transitional (prechaotic) regime under o =7.82 rad's™ (Colour online)
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Fig. 7. Phase trajectories, Poincaré maps, wavelet surface projection, and surface of wavelet
coefficients for chaotic regime under ® =7.83 rad-s™ (Colour online)
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Fig. 8. Phase trajectories, Poincaré maps, wavelet surface projection, and surface of wavelet
coefficients for transitional regime under o =7.845 rad-s” (Colour online)

Further in narrow frequency range 7.90 rads'<©<7.92 rad-s™' the really
chaotic motion occurs. It is transient chaos. We have examined it in details in

[4], therefore now we’ll not discuss it.
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We see that all these transitional regimes are similar to one another, they
have: the small largest Lyapunov exponent, the set of separate points or almost
closed curve on Poincaré map, and the board continuous Fourier spectrum. The
characteristics obtained by continuous wavelet transform using also are alike
very much.

We see two high frequencies with strong power and a lot of low frequencies
with very weak power which provide the continuous Fourier spectrum. They
change little in time that provides almost closed curve or a lot of separate points
on Poincaré map.

4. Conclusion

Continuous wavelet transform CWT is very useful for intermittency
recognition and distinguishing the periodic and chaotic regimes. It is
indispensable when recognizing the intermittency. So it is logical to apply it
when studying the transitional modes.

Transitional regimes are similar to one another, they have: the small largest
Lyapunov exponent, the set of separate points or almost closed curve on
Poincaré map, and the board continuous Fourier spectrum. The characteristics
obtained by continuous wavelet transform applying also are alike very much.
The CWT plots confirm that these regimes don’t belong to the kind of quasi-
periodic or chaotic one. They are exactly transitional regimes. The CWT plots
demonstrate the presence of different frequencies in time series and their
distribution in time very clearly. Thus continuous wavelet transform is very
useful in order to understand well what is this or that transitional mode.
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Cmamms naoitiuna 0o pedaxyii 18.03.2019 p.

Baoicenog B.A., Ilocopenosa O.C., [Tocmuixosa T.I.
MPOMIKHI PEXKAMM I YAC ITIEPEXOIY BIEPOYIAPHOI CHCTEMH 10 XAOCY
B ocTanHi poku B HeNiHIWHIA AWHaMill OCOOJMBA yBara NMPHAUIAIACS BHBYCHHIO XaOTHIHOI
TIOBEIIHKM AMHAMIYHMX CHCTEM Ta CLEHapiiB iXHBOTO TMEpexoiy A0 Xaocy. IHkomm Takmil mepexin
OyBae ckiamHMM. MM criocTepirany TakWi CKIaAHHU Tepexil A0 Xaocy TiJl 9ac AOCHiIKyBaHHT
KBa3iMepioJMIHOTO CLEHApII0 IepeXoay B CIIBHO HeJNiHiifHiil Hermankiii po3puBHIM IBOX MacoBiil
BiOpoynapHi# cucteMi 3 JBoMa CTymHAMHM BigbHOCTI. Ilicns Oidypkamii Heitmapka-Caxepa 6arato
PI3HEX peXHMiB 3aMiHsuIn oaMH oxHoro. Cepen HuX OyiaM TPOMDKHI (HepeximHi) peXUMH 3
CYNEpeuIMBUMH XapaKTepHCTHKaMH. MU aHalmi3yeMo Ii pEXHMH 3aCTOCOBYIOUH Oe3mepepBHE
Beiner neperBoperrs CWT. Moro 300pakeHHs MiATBEpKyIOTh caMe iXHii MepexiJHui THI Ta
JIat0Th HAOYHY KapTHHY HAsBHOCTI Y 4aCOBOMY PAJi Pi3HUX 9acTOT Ta iXHPOTO PO3MOALIY B Haci.
KuouoBi csioBa: BiOpoyaapHa cucteMa, CLEHApHH NEPexXoay A0 XaocCy, MPOMIKHHUIL PeKuM,
BinoOpaxenns [lyankape, ciextp @yp‘e, Oe3nepepBHe BEHBIET NEPETBOPESHH.
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In recent years in nonlinear dynamics particular attention was paid to studying the chaotic
behaviour of dynamical systems and their routes to chaos. Sometimes this route may be intricate. We
watched such intricate route to chaos when studying the quasi-periodic route to chaos in strongly
nonlinear non-smooth discontinuous vibroimpact system that was two-body 2-DOF one. After
Neimark-Sacker bifurcation many different regimes replace each other. There are transitional
regimes with inconsistent characteristics among them. We analyze these regimes with continuous
wavelet transform CWT applying. CWT plots confirm just their transition kind and give clear picture
of different frequencies presence in time series and their distribution in time.

Fig. 8. Ref. 5

VK 539.3

Baoicenos B.A., Ilozopenosa O.C., Ilocmuixosa T.I. TlpomikHi pe:XKMMH WA 4ac mepexoxy
BiOpoynapHoi cuctemMu 10 xaocy// Omip MarepiamiB i Teopis crmopyd: Hayk.-Tex. 30ipH— K.
KHVYBA, 2019. — Bum. 102. - C. 37-45.

B ocmanmi poku 6 meninitiniil Ounamiyi ocobdmea yeaza Npulilanaca 6USHEHHIO XAOMUYHOL
N06eOIHKU OUHAMIYHUX CUCHEM MA CYEHAPIaM iIXHbo2o nepexody 0o xaocy. Inkonu makuii nepexio
oyeae cxradmum. Mu cnocmepicaru maxuil cKIaOHuL nepexio 0o xaocy nio yac 00CiOANCy8aHHSA
K6a3inepiooutHo2o cyenapilo nepexody 8 CUNbHO HeMHIUHIl He2AdOdKill po3PUGHill 060X MACO8ill
6ibpoyOapniti cucmemi 3 06oma cmynuamu gizvhocmi. Iicas 6ighyprayii Helimapra-Caxepa b6aeamo
Ppi3Hux pedicumie 3aminanu oOun o0Hoco. Ceped Hux 6yau npomidicHi (nepexioui) pedicumu 3
cynepeunueumy xapaxmepucmurxamu. Mu ananizyemo yi pescumu 3acmocoeyiouu 6esnepepete
setienem nepemeopenns CWT. Hozo 306paicenns niomeepodicyiomy came ixwiil nepexionuii mun ma
0aionib HAOUHY KAPMUHY HAAGHOCI Y YACOBOMY PAOT PIZHUX YACmOm ma iXHbo20 po3nodiny 6 Yaci.
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