УДК 535.7

Є.Ф. Венгер, А.І. Євтушенко¹, Л.Ю. Мельничук, О.В. Мельничук

ПОВЕРХНЕВІ ПОЛЯРИТОНИ В МОНОКРИСТАЛАХ 6H-SiC, РОЗМІЩЕНИХ У СИЛЬНОМУ ОДНОРІДНО-МУ МАГНІТНОМУ ПОЛІ

Показано можливість збудження поверхневих фононних та плазмон-фононних поляритонів (ПП) в оптично-анізотропних монокристалах карбіду кремнію (політип 6H), розміщених у сильному однорідному магнітному полі за взаємно ортогональних орієнтацій оптичної осі, хвильового вектора та магнітного поля: $C||x, K||C; xy||C; C||z, K \perp C, xy \perp C; C||y, K \perp C, xy||C, \vec{H} \perp K, \vec{H} ||y$. Зареєстровано спектри порушеного повного внутрішнього відбивання (ППВВ) та досліджено основні властивості ПП (дисперсійні криві та коефіцієнт затухання ПП) у разі дії на монокристал 6H-SiC сильного однорідного магнітного поля. Виявлено вплив однорідного магнітного поля на характеристики ПП 6H-SiC.

Ключові слова: поверхневі поляритони, анізотропія, магнітне поле, дисперсійні криві, карбід кремнію.

Питання дослідження властивостей поверхневих поляритонів в оптично-ізотропних та оптично-анізотропних середовищах є складним завданням, яке і досі не втратило своєї актуальності [1—5]. Окремої уваги заслуговують дослідження одновісних полярних оптично-анізотропних монокристалів карбіду кремнію (політип 6Н), що широко використовуються як у фундаментальних, так і прикладних дослідженнях [6—10]. Монокристали 6H-SiC кристалізуються в структурі вюртцита з просторовою групою C_{6v}^4 (P6₃mc) і характеризуються сильною анізотропією властивостей плазмової системи [7]. Для 6H-SiC добре досліджено питання анізотропії ефективної маси електронів і коефіцієнтів затухання фононів та плазмонів [8]. У праці [9] досліджено основні властивості ПП у разі взаємно ортогональних орієнтацій та за різного ступеня легування монокристалів 6H-SiC. Авторами [10, 11] вперше виявлено та досліджено нові типи поверхневих плазмон-фононних поляритонів (ППФП) у легованих анізотропних монокристалах 6H-SiC для орієнтацій хвильового вектора ППФП відносно поверхні і оптичної осі кристала $K \perp C$, $xy \perp C$. Однак відомості про дослідження одночасного впливу анізотропії плазмової та фононної підсистем й однорідного магнітного поля на характеристики поверхневих поляритонів 6H-SiC у літературі відсутні.

У даній праці досліджено властивості поверхневих фононних та плазмонфононних поляритонів монокристалів карбіду кремнія (політип 6H), розміщених у однорідному магнітному полі, що становить від 0 до 100 кЕ (випадок $\vec{H} \perp K$, $\vec{H} \mid \mid y$) за трьох взаємно ортогональних орієнтацій оптичної осі монокристала та хвильового вектора: $C \mid \mid x, K \mid \mid C, xy \mid \mid C; C \mid \mid z, K \perp C, xy \perp C; C \mid \mid y, K \perp C, xy \mid | C.$

Експериментальні спектри ППВВ монокристалів 6H-SiC отримано за допомогою спектрометра ИКС-29 у діапазоні 400—1400 см⁻¹ і приставки порушеного повного внутрішнього відбивання НПВО-2. Діапазон кутів падіння ІЧ-випромінювання на елемент ППВВ становить від 20 до 60°, точність встановлення кутів не гірше ніж 6'. Проміжок між напівцилінд-

© С.Ф. Венгер, А.І. Євтушенко, Л.Ю. Мельничук, О.В. Мельничук, 2010

ISSN 0233-7577. Оптоэлектроника и полупроводниковая техника, 2010, вып. 45 61

ром і досліджуваним монокристалом 6H-SiC створювався за допомогою каліброваних фторпластових прокладок. У проведених дослідженнях використано елемент ППВВ діаметром 12 мм із показником заломлення 2,38.

Розглянемо оптично-анізотропний одновісний полярний напівпровідник (6H-SiC), що межує з оптично-ізотропним середовищем (повітря). Збудження та поширення поверхневих поляритонів відбувається вздовж поверхні монокристала. Вісь *x* розташовано в напрямку поширення електромагнітної хвилі; *xy* — площина, яка містить досліджувану поверхню. Однорідне магнітне поле спрямовано паралельно до досліджуваної поверхні монокристала і перпендикулярно до хвильового вектора (конфігурація Фогта). Розрахунок коефіцієнта ППВВ для орієнтації C||x, C||y,C||z виконано згідно з методикою, описаною в [7]. За наявності дії на монокристал 6H-SiC однорідного магнітного поля діелектрична проникність може бути визначена відповідно до [13]:

$$\begin{pmatrix} \varepsilon_1 & i\varepsilon_2 & 0 \\ -i\varepsilon_2 & \varepsilon_1 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix},$$
(1)

де

$$\varepsilon_{1} = \varepsilon_{\infty} \left(1 + \frac{v_{L}^{2} - v_{T}^{2}}{v_{T}^{2} - v^{2} - i\gamma_{f}v} + \frac{v_{\rho}^{2}(v + i\gamma_{\rho})}{v(\Omega^{2} - (v + i\gamma)^{2})} \right),$$

$$\varepsilon_{2} = \frac{\varepsilon_{\infty}v_{\rho}^{2}\Omega}{v((v + i\gamma_{\rho})^{2} - \Omega^{2})},$$

$$\varepsilon_{3} = \varepsilon_{\infty} \left(1 + \frac{v_{L}^{2} - v_{T}^{2}}{v_{T}^{2} - v^{2} - i\gamma_{f}v} - \frac{v_{\rho}^{2}}{v(v + i\gamma_{\rho})} \right),$$
(2)

де $\varepsilon_{\infty\perp||}$ — високочастотна діелектрична проникність перпендикулярно і паралельно до осі C; $v_{L\perp,||}$, $v_{T\perp,||}$ — відповідно частоти поздовжнього та поперечного оптичних фононів перпендикулярно і паралельно до осі кристала; $v_{p\perp,||}$ — частота плазмового резонансу перпендикулярно і паралельно до осі кристала; $\gamma_{p\perp,||}$ — коефіцієнт затухання плазмонів перпендикулярно і паралельно до осі кристала; $\gamma_{f\perp,||}$ — коефіцієнт затухання оптичного фонона перпендикулярно і паралельно до осі кристала; $\varphi_{f\perp,||}$ — коефіцієнт затухання оптичного фонона перпендикулярно і паралельно до осі кристала; Θ

кристала; $\Omega = \frac{eH}{mc}$ — циклотронна частота.

На рис. 1 подано експериментальні спектри ППВВ (точки — \circ) монокристала 6H-SiC (зразок ПСЕ-ЗБ) за орієнтації $C||z, K \perp C, xy \perp C$ та розрахункові криві за орієнтацій: C||x, K||C, xy||C (крива 1); $C||z, K \perp C, xy \perp C$ (крива 2); $C||y, K \perp C, xy||C$ (крива 3) за відсутності дії магнітного поля на напівпровідник. Кут падіння в призмі ППВВ дорівнює 40°, відстань між зразком та призмою — відповідно 3,1 (1), 2,7 (2), 2,5 мкм (3). Криві 1'—З'розраховано при наявності дії на монокристал 6H-SiC магнітного поля, що становить 100 кЕ за орієнтації $\vec{H} \perp K$, $\vec{H} \mid |y$. Оскільки криві 1—З збігаються з відповідними кривими 1'—З', останні зміщено на графіку на 5 см⁻¹ у низькочастотну область спектра. Частоти мінімумів спектрів ППВВ дорівнюють: 944 (1, 1), 951 (2, 2), 967 см⁻¹ (3, 3), а напівширина спектрів — 16 (1, 1), 26 (2, 2), 54 см⁻¹ (3, 3). Як видно з рис. 1, дія сильного магнітного поля на монокристал 6H-SiC за

Рис. 1. Спектри ППВВ 6H-SiC (зразок ПСЕ-3Б)

Рис. 2. Високо- та низькочастотні дисперсійні гілки 6H-SiC (зразок SC-2)

вказаної орієнтації магнітного поля практично не впливає на спектр ППВВ.

Проведені дослідження в працях [7—11] показали, що збудження ПП фононного та плазмон-фононного типів в 6H-SiC відбуваються в околі частот поперечного і поздовжнього оптичних фононів. У спектрах ППВВ проявляються мінімуми. Згідно з [7, 13] частоти мінімумів у спектрах ППВВ за $H \approx 0$ відповідають поверхневим модам v^+ та v^- і псевдоповерхневим модам за більших полів. Очевидно, що для монокристала 6H-SiC поверхневі моди збігаються із псевдоповерхневими. Якщо циклотронна частота стає наближеною до частоти поверхневих збуджень, то магнітне поле сильно ускладнює дисперсійні співвідношення, що зумовлено нерівністю діагональних і появою недіагональних компонент тензора діелектричної проникності в магнітному полі. Отримані математичні вирази подано в табл. 1.

На рис. 2 наведено експериментальні (точки — \circ) за орієнтації $C || z, K \perp C$, $xy \perp C$ та розрахункові (лінія) дисперсійні криві за орієнтацій $C || y, K \perp C, xy || C$ (крива 1); $C || z, K \perp C, xy \perp C$ (крива 2); C || x, K || C, xy || C (крива 3) без дії магнітного поля на монокристал 6H-SiC (зразок SC-2).

Як видно з рис. 2, у випадку, коли оптична вісь $C||_{y}$ (перпендикулярна до напрямку поширення і нормалі до поверхні кристала), існують дві дисперсійні гілки. Нижня гілка v^- існує в усьому інтервалі зміни хвильового вектора K. Що стосується верхньої гілки v^+ , то область існування обмежена умовою $K > \omega_{T\perp,y||}$. Для випадку, коли оптична вісь кристала перпендикулярна до поверхні $(C||_{z})$ або паралельна до напрямку поширення $(C||_{x})$, кількість дисперсійних гілок збільшується і може досягти п'яти. Одна з них є аналогом низькочастотної гілки v^- і починається за умови K = 0. Кількість гілок, які існують за $K > \omega_{T\perp} / c$, $\omega_{T\perp} / c$, змінюється залежно від орієнтації оптичної осі кристала відносно його поверхні. Вказані моди можуть збуджуватися в усьому діапазоні зміни K (аналогічно до оптичноізотропного кристала), або в обмеженому зверху інтервалі його значень [10, 11].

Як показано в [13], тільки в геометрії Фогта поверхневі хвилі залишаються хвилями TM-типу. Магнітне поле H перпендикулярне до площини поляризації поверхневої хвилі xz, у якій обертається її електричний вектор. У цій площині відбувається і циклотронний рух електронів, який при одному знаку H збігається з «власним» обертанням електрич-

Таблиця 1. Дисперсійні співвідношення для одновісного кристала, розміщеного у магнітному полі (випадок $\vec{H} \perp K$, $\vec{H} \mid \mid y$) за трьох орієнтацій

Орієнтація	Дисперсійне співвідношення					
$C _{z}$	$\mathcal{K}^{2} = \varepsilon_{v\parallel} \frac{1 - \varepsilon_{v\perp}}{1 - \varepsilon_{v\perp} \varepsilon_{v\parallel}}$					
C x	$\kappa^{2} = \varepsilon_{\nu\perp} \frac{1 - \varepsilon_{\nu\parallel}}{1 - \varepsilon_{\nu\perp} \varepsilon_{\nu\parallel}}$					
C y	$K^2 = \frac{\varepsilon_{\nu\perp}}{1 + \varepsilon_{\nu\perp}}$					
$\Pi \mathbf{p} \mathbf{u} \mathbf{w} \mathbf{i} \mathbf{\tau} \mathbf{\kappa} \mathbf{a}. \ \varepsilon_{\mathbf{v}\perp,\parallel} = \frac{\varepsilon_{1\perp,\parallel}^2 - \varepsilon_{2\perp,\parallel}^2}{\varepsilon_{1\perp,\parallel}}.$						

ного вектора в поверхневій хвилі, а при іншому знаку H протилежний йому. Звідси випливає нееквівалентність напрямків +K та -K, різними стають і частоти, які відповідають різним напрямкам H.

Дослідження дисперсійних кривих монокристалів 6H-SiC, розміщених у сильному магнітному полі, що становить 100 кЕ ($\vec{H} \perp K$, $\vec{H} \parallel y$), за трьох взаємно ортогональних орієнтацій, указують на суттєві відмінності в їх поведінці у разі зміни орієнтації. Так, за орієнтації $C \parallel y, K \perp C, xy \parallel C$ без дії магнітного поля на монокристал (зразок ПСЕ-

3Б) існує дві дисперсійні криві (рис. 3, криві 1, 2). Граничне значення v_s визначається із рівняння $\varepsilon_1(v) = -1$. Під дією магнітного поля, що становить 100 кЕ, дисперсійні криві набудуть вигляду 1'-3'. Як видно з рис. 3, під дією магнітного поля високочастотна дисперсійна гілка не змінюється, а низькочастотна зміщується у довгохвильову область спектра. В області частот 500—550 см⁻¹ з'являється додаткова дисперсійна гілка, яка в праці [13] названа «віртуальною» модою. За своїми властивостями вона аналогічна поверхневим коливанням типу ІІ в анізотропних кристалах [14]. Однак, як показано в [15], монокристали оксиду цинку, на відміну від монокристалів 6H-SiC характеризуються сильною анізотропією властивостей фононної підсистеми.

Проведені дослідження дисперсійних кривих для монокристала 6H-SiC за орієнтації C||x, K|| C, xy||C показали, що кількість дисперсійних гілок за такої орієнтації залишається сталою і дорівнює двом (високо- і низькочастотна гілки). Вплив магнітного поля на граничну частоту нижньої дисперсійної гілки спостерігається в діапазоні 162—418 см⁻¹. При зростанні магнітного поля від 0 до 100 кЕ, на відміну від попередньої орієнтації, дисперсійна гілка зміщується у високочастотну область спектра на 256 см⁻¹.

Рис. 3. Дисперсійні криві 6H-SiC (зразок ПСЕ-ЗБ) у разі *С*||*у*, *K*⊥*C*, *xy*||*C* при *H*, кЕ: *1*, 2 — 0; *1′*—3′— 100

Рис. 4. Дисперсійні криві 6H-SiC (зразок ПСЕ-ЗБ) у разі *C* || *z*, *K* \perp *C*, *xy* \perp *C* при *H*, кЕ: *1*—4 — 0; *1* — 5 — 100

На рис. 4 наведено дисперсійні криві сильно легованого 6H-SiC (зразок ПСЕ-ЗБ) за орієнтації $C \mid z, K \perp C$, $xy \perp C$. Розрахунок указує на можливість збудження в 6H-SiC за вказаної орієнтації та відсутності дії на монокристал магнітного поля (криві 1-4) до чотирьох дисперсійних гілок. Точки (0) експериментальні дані для 6H-SiC за орієнтації вказаної та відсутності дії магнітного поля на монокристал. За наявності впливу на монокристал магнітного поля (H > > 50 кЕ, випадок $\vec{H} \perp K$, $\vec{H} \parallel y$) в 6H-SiC можливе збудження до п'яти дисперсійних гілок (криві 1'-5'). Крім досліджених у працях [10, 11] дисперсійних кривих, було зареєстровано збудження нової гілки, початок якої відповідає умові $\varepsilon_1 = = 0$.

Рис. 5. Залежність коефіцієнта затухання ПП від частоти $\Gamma_{\Pi\Pi}(v)$ 6H-SiC: *1* — ПСЕ-3Б; 2 — SiC-1; *3* — SiC-2; *1'*—3'— ПСЕ-3Б, *H* = 30, 65, 100 кЕ

Згідно з [7] граничне значення v_s визначається з умов $\varepsilon_{||}(v)\varepsilon_{\perp}(v) = 1$, причому $\varepsilon_{||}$ і ε_{\perp} від'ємні.

Граничні частоти нижніх, верхніх плазмон-фононних та «віртуальних» фононних гілок для монокристалів 6H-SiC без впливу на них магнітного поля та у разі дії магнітного поля, що становить 30, 65 та 100 кЕ, за орієнтацій $\vec{H} \perp K$, $\vec{H} \mid \mid y$ та $C \mid \mid x, K \mid \mid C, xy \mid \mid C; C \mid \mid z, K \perp C, xy \perp C; C \mid \mid y, K \perp C, xy \mid \mid C$ подано в табл. 2.

На рис. 5 наведено експериментальну і теоретичну залежності коефіцієнта затухання ПП $\Gamma_{\Pi\Pi}(v)$ від частоти ПП для монокристала 6H-SiC. Розрахунок виконано для монокристалів з ідеально гладкою поверхнею [7]. Криві *1—3* розраховано для монокристалів карбіду кремнію з різним ступенем легування та за відсутності дії на кристал магнітного поля за методикою, описаною в [7].

Криві $1' - 3' - \Gamma_{\Pi\Pi}(v)$ для зразка ПСЕ-ЗБ у випадку дії на нього магнітного поля, що становить 30 (1'), 65 (2'), 100 кЕ (3'), за орієнтації $\vec{H} \perp K$, $\vec{H} \mid \mid y$.

У літературі зустрічається декілька механізмів пояснення затухання ПП, а саме: внаслідок поверхневого розсіювання електронів, спричиненого неглибоким проникненням світла та наявністю на поверхні збідненого носіями шару, що може призводити до перекачки енергії поверхневих плазмонів в об'ємні [7, 13].

З рис. 5 видно, що із збільшенням концентрації вільних носіїв зарядів у монокристалах 6H-SiC коефіцієнт затухання ПП зменшується. Обернена закономірність спостерігається при зростанні магнітного поля, в якому розміщено досліджуваний напівпровідник.

Коефіцієнт затухання поверхневих поляритонів монокристала 6H-SiC розраховано графічним методом, описаним у праці [7], для зразків SC-1, SC-2 та ПСЕ-3Б за магнітних полів 0, 30, 65, 100 кЕ та орієнтацій $C||y, K \perp C, xy||C; C||z, K \perp C,$ $xy \perp C; C||x, K||C, xy||C, \vec{H} \perp K, \vec{H} ||y$ (табл. 3).

Таким чином, у даній праці вперше зареєстровано спектри порушеного повного внутрішнього відбивання в області збудження поверхневих

Таблиця 2. Граничні частоти дисперсійних гілок монокристала 6H-SiC

<i>B</i> , E							
Зразок	1	$30 \cdot 10^3$	$65 \cdot 10^3$	$100 \cdot 10^3$			

	v_{pf}^{-} , cm^{-1}	v_{pf}^{+} , cm^{-1}	ν _р , см ⁻¹	ν _ν , см ⁻¹	v_{pf}^{+} , cm ⁻¹	v_{pf}^{-} , cm ⁻¹	V CM	ν, 4 ⁻¹	v_{pf}^{+} , cm ⁻¹	v_{pf}^{-} , cm^{-1}	ν _ν , см ⁻¹	v_{pf}^+ , cm ⁻¹
C y												
ПСЕ-3Б SC-1 SC-2	409 454 523	998 1014 1049	386 432 504	450 493 558	997 1013 1048	355 402 476	48 52 58	89 29 89	996 1011 1044	326 373 449	530 566 620	995 1009 1040
	$C _Z$											
ПСЕ-3Б	162 472	961 1050	279	427	960 1045	18 354	44	41	958 1046	25 418	468	954 1049
SC-1	170 472	963 1069	298	479	962 1070	16 376	48	84	957 1072	23 441	507	952 1069
SC-2	225 540	971 1113	347	539	967 1095	21 425	54	47	960 1097	30 489	564	952 1100
$C \mid\mid x$												
ПСЕ-3Б SC-1 SC-2	162 170 225	961 964 971	279 299 347	9 8 7	960 962 967	354 376 425			958 957 960	418 441 489		954 952 952

Таблиця 3. Напівширина мінімуму в спектрі ППВВ Г_п та коефіцієнт затухання ПП Г_{пп} 6H-SiC при H = 0 і 100 кЕ

	Н, кЕ											
φ, °		0					100					
	ν_{min} , см $^{-1}$	χ	$\Gamma_{\rm n}$, см $^{-1}$	$\Gamma_{\rm nn}$, см $^{-1}$	ν_{min} , см $^{-1}$	χ	$\Gamma_{\rm n}$, см ⁻¹	$\Gamma_{\rm nm}$, см $^{-1}$				
C x												
ΠCE-3Б ($\gamma_{p\perp} = 620 \text{ cm}^{-1}, \gamma_{p\parallel} = 340 \text{ cm}^{-1}, \gamma_{f\perp\downarrow} = 12 \text{ cm}^{-1}$)												
30 35	917 937	1,398 1,691	29 188	22 171	917 937	1,398 1,692	29 190	22 174				
	SC-1 ($\gamma_{n } = 700 \text{ cm}^{-1}$, $\gamma_{n } = 260 \text{ cm}^{-1}$, $\gamma_{f } = 14 \text{ cm}^{-1}$)											
30 35	919 939	1,41 1,714	28 215	23 198	919 939	1,4 1,714	30 219	23 202				
		SC-2 ($\gamma_{p\perp} = 830 \text{ cm}$	$ _{M^{-1}}, \gamma_{p } = 450$	$\mathrm{CM}^{-1}, \gamma_{f\perp,\parallel} = 12$	см ⁻¹)						
30 35	922 944	1,415 1,752	45 415	34 359	922 944	1,415 1,752	45,12 420,45	34 364				
				$C _{z}$								
			ПСЕ-ЗБ	$(\gamma_{p\perp}=0, \gamma_{p\mid\mid}=$	$=0, \gamma_{f\perp, }=0)$							
30	933	1,41	134	97	933	1,41	139	115				
			SC-1 (γ	$\gamma_{p\perp}=0,\gamma_{p\mid\mid}=0$	$\gamma_{f\perp, }=0$							
30	938	1,42	230	163	938	1,435	_	—				
			SC-2 (γ ₁	$\gamma_{p\perp}=0, \gamma_{p\mid\mid}=0$	$\gamma_{f\perp} = 0$							
30	946	1,34	157	94	946	1,35		204				
35 50	956 958	1,39 1,4	252 327	165 203	956 958	1,43 1,46		_				
1		_,.				-,	Закінч	ення табл				
	Н, кЕ											
φ, °	0					1	00					
	L											

	ν_{min} , cm^{-1}	χ	$\Gamma_{\rm fr}$, см $^{-1}$	$\Gamma_{\rm nm}$, см $^{-1}$	ν_{min} , см $^{-1}$	χ	$\Gamma_{\rm n}$, см $^{-1}$	$\Gamma_{\rm nn},$ см $^{-1}$		
<i>C</i> <i>y</i>										
			ПСЕ-ЗБ ($\gamma_{p\perp} = 0, \gamma_{p\mid\mid} =$	$0, \gamma_{f\perp, } = 0)$					
30 35	945 963	1,425 1,594	274	180 437	945 963	1,42 1,59	296 	180 473		
SC-1 ($\gamma_{p\perp} = 0, \gamma_{p\mid} = 0, \gamma_{f\perp\mid} = 0$)										
30	954	1,445	380	237	954	1,594	402	245		
SC-2 ($\gamma_{p\perp} = 0, \gamma_{p\mid} = 0, \gamma_{f\perp\mid} = 0$)										
50	984	1,51	594	543	984	1,515	470	436		

плазмон-фононних поляритонів в одновісному гексагональному 6H-SiC, розміщених у сильному однорідному магнітному полі. Досліджено дисперсійні залежності та коефіцієнти затухання поверхневих фононних та плазмон-фононних поляритонів 6H-SiC, розташованих у сильному однорідному магнітному полі. Показано, що у разі дії магнітного поля в 6H-SiC проявляються нові дисперсійні гілки, а їх кількість залежить як від оптичних та електрофізичних параметрів кристала, так і від його орієнтації та величини магнітного поля. Виявлено залежність коефіцієнта затухання ПП від величини зовнішнього магнітного поля. Однак питання дослідження самого механізму потребують додаткового вивчення.

E.F. Venger, A.I. Yevtushenko, L.Yu. Melnichuk, O.V. Melnichuk

SURFACE POLARITONS IN 6H-SIC SINGLE CRYSTALS PLACED IN A STRONG UNIFORM MAGNETIC FIELD

Feasibility of excitation of surface phonon and plasmon-phonon polaritons (PPs) in optically anisotropic silicon carbide single crystals (polytype 6H) placed in a strong uniform magnetic field, at orthogonally related optical axis, wave vector and magnetic field: $C \mid |x, K| \mid C, xy \mid |C; C \mid |z, K \perp C, xy \perp C; C \mid |y, K \perp C, xy \mid |C; \vec{H} \perp K, H \mid |y$ has been demonstrated. The attenuated total reflectance spectra were registered, and the main PP properties (dispersion curves and damping coefficient) in 6H-SiC single crystal subjected to action of strong uniform magnetic field were studied. The effect of the uniform magnetic field on the properties of PPs in 6H-SiC was determined.

Keywords: surface polaritons, anisotropy, magnetic field, dispersion curves, silicon carbide.

- 1. Альшиц В.И., Любимов В.Н. Бездисперсионные поверхностные поляритоны на различных срезах оптически одноосных кристаллов // ФТТ. 2002. **44**, вып. 2. С. 371—374.
- 2. Виноградов Е.А. Поляритоны полупроводниковой микрополости // УФН. 2002. **172**, № 12. С. 1371—1410.
- 3. Дацко В.Н., Копылов А.А. О поверхностных электромагнитных волнах // Там же. 2008. **178**, № 1. С. 109—110.
- Степанов Н.П. Плазмон-фонон-поляритоны в легированных акцепторной примесью сплавах висмут-сурьма // ФТП. — 2004. — 38, вып. 5. — С. 552—555.
- 5. *Фурс А.Н., Барковский Л.М.* Поверхностные электромагнитные волны в фарадеевских средах // ЖТФ. — 2003. — **73**, вып. 4. — С. 9—16.
- Peter F., Tsunenobu K., Lothar L., Gerhard P. Silicon Carbide: Two Volume Set. Volume 1: Growth, Defects, and Novel Applications. — Hardcover, 2009. — 528 p.; Volume 2: Power Devices and Sensors. — Hardcover, 2009. — 520 p.
- 7. Венгер Є.Ф., Мельничук О.В., Пасечник Ю.А. Спектроскопія залишкових променів. К.: Наук. думка, 2001. — 191 с.
- Мельничук А.В., Пасечник Ю.А. Анизотропия эффективных масс электронов в карбиде кремния // ФТТ.— 1992. — 34, № 2.— С. 423—428.
- Мельничук А.В. Исследование поверхностных плазмон-фононных поляритонов в монокристаллах SiC-6H методом НПВО // Поверхность. Физика, химия, механика. — 1998. — № 7. — С. 76—81.

- 10. Поверхневі плазмон-фононні поляритони карбіду кремнію / Є.Ф. Венгер, Л.Ю. Мельничук, О.В. Мельничук та ін. // Укр. фіз. журн. 1998. **43**, № 5. С. 598—603.
- 11. *Мельничук А.В., Пасечник Ю.А.* Влияние анизотропии на дисперсию поверхностных плазмонфононных поляритонов карбида кремния // ФТТ. — 1998. — **40**, № 4. — С. 636—639.
- 12. *Reflectance* spectra of a 6H-SiC single crystal placed in a strong homogeneous magnetic field / E.F. Venger, A.I. Evtushenko, L.Yu. Melnichuk et al. // J. Eng. Physics and Thermophysics. 2009. 82, N 6. P. 1211—1218 (E-mail: http://www.springerlink. com/content/4043151v3243r701).
- 13. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Агроновича, Д.Л. Миллса. М.: Наука, 1985. 528 с.
- 14. *Мельничук А.В., Пасечник Ю.А.* Затухание поверхностных плазмон-фононных поляритонов окиси цинка // ФТТ. 1996. **38**, № 8. С. 2343—2346.
- Anisotropy of the ZnO single crystal reflectivity in the region of residual rays / E.F. Venger, A.V. Melnichuk, L.Yu. Melnichuk, Yu.A. Pasechnik // Physica status solidi (B). — 1995. — 188, N 2. — P. 823—831.

Одержано 26.02.2010

Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України Проспект Науки, 41 03026 Київ ¹Ніжинський державний університет ім. Миколи Гоголя Вул. Крапив'янського, 2 16600 Ніжин