УДК 623.983

А.В. ДЕРЕПА,

кандидат технічний наук, старший науковий співробітник (Центральний науково-дослідний інститут озброєння та військової техніки, м. Київ)

Аналіз впливу фізичних властивостей шпангоутного набору днища корабля на розподіл амплітуди і фази тиску звукового поля по активній поверхні корабельної антени в системі «надводний корабель – гідроакустична станція»

Виходячи із задачі систематизованого дослідження характеристик гідроакустичного озброєння в реальних умовах, проведені кількісні оцінки впливу фізичних властивостей шпангоутного набору днища корабля на звукове поле корабельних гідроакустичних станцій з підкільними антенами.

Исходя из задачи систематизированного исследования характеристик гидроакустического вооружения в реальных условиях, проведены количественные исследования влияния физических свойств шпангоутного набора днища корабля на звуковое поле корабельных гидроакустических станций с подкильными антеннами.

Досвід експлуатації корабельних систем «надводний корабель - гідроакустична станція» («НК-ГАС») з підкільними антенами свідчить про те, що їх характеристики в умовах експлуатації зазнають суттєвих змін, величина яких залежить від конкретних особливостей як конструкції надводного корабля (НК), так і взаємного розміщення акустичної антени гідроакустичної станції (ГАС) та корпуса корабля. Фізичною причиною цих змін є виникнення при експлуатації ГАС в умовах корабля-носія полів розсіювання звуку як від морської поверхні, так і від елементів конструкції корабля. Природно, що кожний корабель створює поля розсіювання звуку, притаманні тільки йому. І також зрозумілий той факт, що при створенні корабельної ГАС, яка призначена звичайно для багатьох проектів кораблів, врахування умов впливу цих полів розсіювання звука не може бути здійснено. Тому і з'явилась проблема оцінки впливу умов експлуатації корабельної ГАС на її параметри в умовах корабля-носія ГАС.

Пошук шляхів вирішення такої задачі при умові, що корпус носія має складну форму та насичений такими конструктивними елементами, як палуби, переборки, повздовжній та поперечний набори тощо, є складним. У зв'язку з цим доцільно визначити характерні особливості (у подальшому – елементи) корпуса корабля, що знаходяться поблизу антени, стосовно яких провести оцінку звукових полів гідроакустичних антен. До таких характерних елементів віднесемо, у першу чергу, скінченність розмірів носія, його форму, деякі конструктивні елементи (днище, ребра жорсткості тощо), а також фізичні властивості матеріалів елементів його корпуса. При цьому фізичну модель задачі, що розглядається, будемо будувати з урахуванням прийнятих на практиці варіантів розміщення антени на кораблі (під кілем або в носовому бульбовому обтічнику), діапазону робочих частот, типу (розмірів) носія тощо. Це, у свою чергу, обумовлює і математичні особливості рішення задачі.

Вивчення питання, що розглядається, у першу чергу пов'язано з вибором фізичної моделі елементів конструкції корпуса носія. Вважається, що розгляд пружної пластини скінченних розмірів, яка лежить на границі розподілу середовищ «вода – повітря», у принципі відображає як сам факт присутності елементів корпуса носія, так і дозволяє врахувати їхні характерні фізичні властивості та геометричні розміри. У такій постановці можливе одночасне врахування не тільки взаємного розташування антени та пластини, але і деяких конструктивних елементів носія, наприклад корпусного набору у вигляді ребер жорсткості, що розміщенні на пластині зі сторони повітря.

Сукупність матеріалів досліджень, наведених автором, дозволяє стверджувати, що реберний набір і параметри, які його характеризують, суттєво впливають на направленість і енергетичні характеристики корабельної підкільної гідроакустичної антени.

Метою цієї роботи є дослідження кількісних оцінок впливу фізичних властивостей шпангоутного (реберного) набору днища корабля на параметри звукового поля підкільних антен корабельних ГАС у системі «НК-ГАС». Розглянемо вплив фізичних властивостей шпангоутного (реберного) набору днища корабля на розподіл амплітуди і фази тиску звукового поля по активній поверхні підкільної корабельної антени в системі «НК-ГАС». Розрахункова модель системи «гідроакустична антена – корабель», що досліджується, зображена на рис. 1, а позначення відповідають позначенням, прийнятим у роботі [1].

Дослідження значень модуля і фази тиску звукового поля по активній поверхні підкільної корабельної антени проведені при різних типах розподілу коливальної швидкості вздовж твірної антени як при відсутності нахилу діаграми спрямованості у вертикальній площині, так і у випадку її нахилу. Співвідношення і позначення відповідають наведеним у роботі [1].

Значення модуля і фази тиску звукового поля, що цікавлять нас, виходячи із зручності проведення розрахунків, подамо в нормованому вигляді:

$$\begin{split} & \left| P_{(c\vec{r})} \right| \left[\rho_s c_s | v(\vec{r}_0) | \right]^{-1} = P , \\ & \varphi^{\circ}(\vec{r}) = \varphi_p(\vec{r}) - \varphi_V(\vec{r}) , \end{split}$$

де $\vec{r} \in S_0$; \vec{r}_0 – відповідає координаті центра верхньої зони розділення поверхні антени по координаті z; $\varphi_v(\vec{r}_0)$ – значення фази коливальної швидкості в точці \vec{r}_0 ; $\varphi_p(\vec{r})$ – значення фази тиску в даній точці на поверхні антени.

Поведінку модуля і фази тиску звукового поля дослідимо далі.

Як розрахункові співвідношення прийняті аналітичні вирази, отримані в роботі [1]. Розрахунки виконувалися для таких параметрів антен і елементів конструкції корпуса корабля. Акустична антена кругова циліндрична непрозора для звуку діаметром D = 0,5 λ і висотою H = λ розбита вздовж твірної на *n* однакових ділянок. Пластина має розміри $L_x \times L_y = (4 \times 3)\lambda$; товщину $kh_1 = 0,27$; 0,54 та виконана із сталі ($E = 1,96 \cdot 10^{11}$ H/m²; $\sigma = 0,25$; $\rho = 7,8 \cdot 10^3$ кг/м³) або з алюмінію ($E = 6,9 \cdot 10^{11}$ H/m²;

 $\sigma = 0,36$; $\rho = 2,7 \cdot 10^3$ кг/м³). Ребра жорсткості виконані або із сталі, або з алюмінію. Ширина ребер прийнята рівній $kl_{x,y} = 0,138\lambda$ відстань між центрами ребер $kd_{x,y} = 0,689\lambda$. Розрахунки виконані для значення $k\lambda = 3,446$.

Розглянемо послідовно ряд випадків, що являють практичний інтерес. Зокрема, цікава оцінка значень модуля і фази тиску звукового поля P і φ° вздовж твірної антени при різному взаємному розташуванні антени і пластини і порівняння отриманих результатів з випадками, коли пластина на границі розподілу середовищ відсутня, і коли антена розміщена в безмежному середовищі. Ілюструють такі залежності криві, що показані на рис. 2–5.

Група рис. 2–5 відповідає значенню перерізу поверхні антени вертикальною площиною $\varphi = \varphi_1 = 22,5^\circ$. Рис. 2 і 4 одержані при $\mathcal{G}_0 = 90^\circ$; значенню $\mathcal{G}_0 = 60^\circ$ відповідають рис. 3 і 5. Заглибленню антени $z_T = 0,125\lambda$ відповідають рис. 2 і 3; $z_T = 1\lambda -$ рис. 4 і 5.

Криві на рис. 4 і 5 отримані за умови центрального розташування антени прийнятих вище розмірів відносно сталевої пластини, розміри якої також обумовлені вище, криві 2 – при зміщенні антени на величину $(L_x/2) - R$, криві $3 - L_x/2$, криві $4 - (L_x/2) + R$, криві 5 - при відсутності пластини на гладкій границі розподілу середовищ «вода – повітря», криві 6 – при розміщенні антени у вільному середовищі.

Аналіз кривих 4 і 5 показує, що розподіл нормованих значень тиску P(a) и фази $\varphi^{\circ}(\delta)$ вздовж твірної антени істотно залежить як від взаємного розташування антени і пластини, так і від заглиблення антени відносно поверхні $S \in S_r \cup S_{II}$ (рис. 1).

При цьому характер вказаних залежностей відрізняється в різних перерізах поверхні антени по координаті. Ступінь впливу пластини на досліджувані характеристики, який випливає з порівняння кривих 1-4 з кривими 5, 6, також залежить від значення φ . Відзначений вплив спостерігається як при малих, так і при порівняно великих значеннях z_{τ} , а також при різних типах розподілу

Рис. 1. Модель гідроакустичної антени скінченних розмірів у присутності пружної пластини обмежених розмірів, що лежить на границі розподілу середовищ «вода – повітря»

Рис. 2. Модуль и фаза тиску звукового поля при $\varphi = 22,5^{\circ}$, $\vartheta_0 = 90^{\circ}$, $z_{\scriptscriptstyle T} = 0,\!125\lambda$

Рис. 3. Модуль і фаза тиску звукового поля при $\varphi = 22.5^{\circ}$, $\vartheta_0 = 60^{\circ}$, $z_{\tau} = 0.125\lambda$

Рис. 4. Модуль і фаза тиску звукового поля при $\varphi=22,5^\circ, \ \vartheta_0=90^\circ, \ z_T=1\lambda$

Рис. 5. Модуль і фаза тиску звукового поля при $\varphi = 22,5^{\circ}$, $\vartheta_0 = 60^{\circ}$, $z_T = 1\lambda$

коливальної швидкості по поверхні антени ($\mathcal{G}_0 = 90^\circ$, 60°). Цікаво відзначити, що в залежності від взаємного розташування антени і пластини, навіть за відсутності компенсації діаграми спрямованості, на антені можуть виникати ділянки (крива 4 для φ° на рис. 2) протифаз, тоді як при наявності компенсації такі ділянки є як при роботі антени в системі «пластина – антена», так і у відсутності пластини, а також в безмежному середовищі. Відзначимо також, що фазові відмінності розглянутих випадків виражені яскравіше при великих значеннях z_{τ} .

Розглянемо вплив товщини пластини у формуванні досліджуваних нами характеристик поля антени. У зв'язку з цим був виконаний розрахунок розподілу значень *P* і φ° вздовж твірної антени при товщині стальної пластини $kh_1 = 0,27$; 0,54. Результати такого розрахунку для центрального розміщення антени показані на рис. 6 для $z_T = 0,125\lambda$ і $\mathcal{G}_0 = 90^{\circ}$.

Криві I на рис. 5 і 6 відповідають значенню $\varphi = \varphi_1 = 22.5^\circ$; криві $2 - \varphi_2 = 67.5^\circ$, при $kh_1 = 0.27$; криві $3 - \varphi_1$, криві $4 - \varphi_2$ при $kh_1 = 0.54$. Видно, що товщина пластини є істотним чинником, що впливає на розподіл тиску по поверхні антени. Як і в попередньому випадку, зміна товщини пластини навіть при $\mathcal{G}_0 = 90^\circ$ може викликати появу ділянок протифаз на поверхні антени.

Наступним фактором, що потенційно впливає на досліджувані характеристики, є фізичні властивості матеріалу пластини. Для кількісної оцінки цього впливу був проведений розрахунок P і φ° для двох випадків, коли пластина виконана із сталі і алюмінію. Результати такого розрахунку зображені на рис. 7 для $z_T = 0,125\lambda$ і $\mathcal{G}_0 = 90^{\circ}$ при центральному розташуванні антени щодо пластини, товщина якої $kh_1 = 0,54$. Криві I і 2 відповідають φ_1 і φ_2 для стальної пластини, криві 3 і $4 - \varphi_1$ і φ_2 для алюмінієвої пластини. Видно, що залежно від

Рис. 7. Модуль і фаза тиску звукового поля різних значень φ у залежності від матеріалу пластини, $z_{\tau} = 0,125\lambda$ і $\vartheta_0 = 90^{\circ}$

Рис. 8. Модуль і фаза тиску звукового поля для різних значень φ при наявності реберного набору та центральному розміщені антени, $z_T = 0,125\lambda$, $\vartheta_0 = 90^\circ$

матеріалу пластини розміри і кількість ділянок протифаз на поверхні антени може змінюватися, і відмінності значень *Р* також зберігаються.

Оцінимо далі вплив реберного набору, розташованого на пластині з боку повітря, на розподіл значень P і φ° вздовж твірної антени. Перед усім припустимо, що ребра розташовані тільки вздовж однієї із сторін сталевої пластини, наприклад, вздовж сторони L_x . Припустимо, що висота цих ребер $10kh_1$. Виявлення впливу такого реберного набору може бути проведено на основі аналізу кривих на рис. 8, отриманих при центральному розташуванні антени $z_T = 0,125\lambda$, $\mathcal{G}_0 = 90^{\circ}$.

Криві *1* на цих рисунках відповідають перерізу по φ_2 , криві $2 - \varphi_2$ при наявності ребер, криві $3 - \varphi_1$, криві $4 - \varphi_2$ при відсутності ребер, криві 5 – при відсутності пластини на гладкій межі, криві 6 – у вільному середовищі. Як випливає з аналізу, присутність ребер істотно змінює амплітудно-фазову структуру поля на поверхні антени в порівнянні з випадком їх відсутності.

Збільшення заглиблення антени до значення $z_T = 1\lambda$ приводить до результатів, що наведені на рис. 9 для $\mathcal{G}_0 = 90^\circ$, нумерація і приналежність кривих на рис. 9 аналогічні прийнятій на рис. 8. Видно, що в цьому випадку при $\mathcal{G}_0 = 90^\circ$ роль ребер зменшилася в порівнянні з попереднім випадком. У той же час, розрахунки показують, що при $\mathcal{G}_0 = 60^\circ$ ця роль залишається помітною.

На закінчення виконаємо оцінки впливу мірності реберного набору та фізичних властивостей матеріалу ребер на досліджувані характеристики. Деякі результати досліджень, виконаних в цих напрямах, зображені на рис. 10 для центрального розташування антени щодо сталевої пластини товщиною $kh_1 = 0.27$; $z_T = 0.125\lambda$ і $\mathcal{G}_0 = 90^\circ$. Криві I на цьому рисунку відповідають φ_1 , криві $2 - \varphi_2$ для випадку двовимірного реберного

Рис. 9. Модуль і фаза тиску звукового поля для різних значень φ при наявності реберного набору та центральному розміщені антени, $z_{\tau} = 1\lambda$, $\vartheta_{0} = 90^{\circ}$

Рис. 10. Модуль і фаза тиску звукового поля для різних значень φ при наявності реберного набору та центральному розміщенні антени $z_{\tau} = 0,125\lambda$, $\vartheta_0 = 90^{\circ}$

набору (ребра паралельні сторонам L_x і L_y); криві 3 – φ_1 ; криві 4 – φ_2 для одновимірного реберного набору (ребра паралельні сторонам L_x). Для кривих I-4 висота ребер рівна $10kh_1$. Крива 5 на рис. 10 відповідає φ_1 , крива $\delta - \varphi_2$ для двовимірного реберного набору, в якому ребра паралельні стороні L_x , виконані із сталі та мають висоту $1kh_1$, а ребра, паралельні стороні L_y , виконані з алюмінію і мають висоту $10kh_1$.

З рис. 10 випливає, що наявність реберного набору, його мірність, висота ребер і фізичні властивості їх матеріалу відіграють істотну роль у формуванні тонкої структури поля тиску на поверхні антени.

Висновок. Виконаний аналіз із залученням чисельних оцінок показує, що наявність реберного набору, його мірність і параметри, що характеризують реберний набір, є суттєвими чинниками у формуванні поля тиску в акустичній антені корабельної ГАС. Більш того, показано, що комбінацією фізичних параметрів реберного набору можливо забезпечити управління характеристиками звукового поля антени.

СПИСОК ПОСИЛАНЬ

 Дерепа А. В. До визначення звукового поля гідроакустичної антени в присутності елементів корпуса надводного корабля // Збірник наук. праць / Нац. ун-т кораблебудування. Вип. 2. Миколаїв : Нац. ун-т кораблебудування, 2011. С. 122–129.

Рецензент А. Г. Лейко, д-р техн. наук, проф. (Национальный технический университет «Киевский политехнический институт»)