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Abstract An advanced procedure for quantization of the quasistationary states

of the relativistic Dirac-Slater equation is developed within a gauge-invariant

relativistic many-body perturbation theory ([1], [2]). New numerical approach

to calculating spectra of the quantum (atomic) systems with an account

of relativistic and exchange-correlation corrections is proposed. The special

procedure is realized in order to to obtain high-accuracy eigen values and wave

function by an iterative procedure, checking the number of node to insure

convergence toward the right eigenvalue.
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1 Introduction

The problems of calculating the eigen values and eigen functions of the the dif-

ferent quantum operators is relating to a number of the most important and

actual problems of the modern quantum geometry and quantum theory of the

many-body systems. In this paper we have developed an advanced procedure for

quantization of the quasistationary states of the relativistic Dirac-Slater equation

within gauge-invariant relativistic many-body perturbation theory ([1], [2]). The

su�ciently full reviews of the modern methods for calculating the eigen values of

energies and eigen functions for di�erent operators (Hamiltonians) of the �nite
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quantum (atomic) systems are presented in a number of recent monographes

and books (see, for example,[1], [3], [4], [6], [7]) and references therein)). Let us

remind that the well-known multi-con�guration Dirac-Fock (MCDF) method (in

the versions of the Desclaux program, Dirac package etc, see for example, [3], [5],

[6]) is the most reliable version of calculation for multielectron systems with a

large nuclear charge; in these calculations one- and two-particle relativistic e�ects

are taken into account practically precisely. The calculation program of Desclaux

is compiled with proper account of the �niteness of the nucleus size. However,

a detailed description of the role of the nucleus size and its in�uence for quite

heavy atomic systems requires the further investigation. I In our paper a new nu-

merical approach to calculating spectra of the eigen values for the �nite quantum

(atomic) systems with an account of relativistic, exchange-correlation corrections

is proposed. The wave functions zeroth approximation basis is found from the

Dirac-Slater equations solution. The potential includes the self-consistent mean

�eld potential, the electric of a nucleus (within the Fermi model). The special

procedure is realized in order to to obtain high-accuracy eigen values and wave

function by an iterative procedure, checking the number of node to insure con-

vergence toward the right eigenvalue. In an advanced Dirac-Slater approach in

order to conserve a consistence one should take into account the inter-electron

correlation corrections, for example, by means using the technique of the cor-

relation potentials of the Slater type ([1], [4]). New element of the approach is

connected with using ab initio consistent quantum electrodynamics approach to

construction of the optimal one-quasiparticle representation in the Dirac-Slater

approach. Numerical estimates are given for the eigen values of energies (the

transition energies) in a number of the lithium-like multicharged ions with the

di�erent value od the nuclear charge Z.

2 Dirac-Slater equation: quantization of the quasistationary states

In this section we describe the key moments of our approach to quantization of

the quasistationary (stationary) states of the relativistic Dirac-Slater equation

with an account of relativistic, exchange-correlation e�ects in the Slater and

correlation potential approximation.

One-particle wave functions are found from solution of the relativistic Dirac

equation, which can be written in the central �eld in a two-component form (see,
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for example,([1], [7]):

∂F

∂r
+ (1 + χ)

F

r
− (ε+m− v)G = 0,

∂G

∂r
+ (1− χ)G

r
− (ε−m− v)F = 0. (1)

Here we put the �ne structure constant α = 1. The moment number

χ =

{
−(1 + 1), j > 1

1, J < 1
(2)

The potential v includes the self-consistent mean �eld potential, the electric

potential of a nucleus and the Slater exchange and e�ective correlation potentials

(see, for example,([1], [4])).

At large χ the radial functions F and G vary rapidly at the origin of co-

ordinates:

F (r), G(r) ≈ rγ−1, (3)

γ =
√
χ2 − α2Z2.

This involves di�culties in numerical integration of the equations in the region

r → 0. To prevent the integration step becoming too small it is convenient

to turn to new functions isolating the main power dependence: f = Fr1−|χ|,

g = Gr1−|χ|. The Dirac equation for F and G components are transformed as:

f ′ = −(χ+ |χ|)f
r
− αZV g −

(
αZEnχ +

2

αZ

)
g,

g′ = (χ− |χ|)g
r
− αZV f + αZEnχf. (4)

Here the Coulomb units (C.u.) are used; The system of Eq. (4) has two

fundamental, solutions. We are interested in the solution regular at r → 0. The

boundary values of the correct solution are found by the �rst term s of the

expansion into the Taylor series:

g =
(V (0)− Enχ)rαZ

2χ+ 1
; f = 1 at χ < 0,

f =

(
V (0)− Enχ −

2

α2Z2

)
αZ; g = 1 at χ > 0. (5)

The condition f, g → 0 at r → ∞ determines the quanti�ed energies of the

state Enχ. At correctly determined energy Enχ of the asymptotic f and g at

r →∞ are:

f, g ∼ exp (−r/n∗) , (6)

where n∗ =
√

1
2|En=χ| is the e�ective main quantum number. The Eq.(4) was

solved by the Runge-Kutt method (see details in ([1], [7]).
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3 Nuclear potential of Dirac-Slater equation: The Gauss-model

di�erential equations method

Earlier ([1]-[10]) the di�erent characteristics of the heavy hydrogen-like, Ne-like

and other ions with the nucleus in the form of a uniformly charged sphere have

been calculated. Here the smooth Gaussian function of the charge distribution

in the nucleus is used. Using the smooth distribution function (instead of the

discontinuous one) simpli�es the calculation procedure and permits �exible sim-

ulation of the real distribution of the charge in the nucleus. As in refs.( [1],

[7]) one could set the charge distribution in the nucleus ρ(r) by the Gaussian

function. With regard to normalization we have:

ρ(r|R) = 4γ3/2√
π

exp(−γr2);∫ ∞
0

drr2ρ(r|R) = 1; (7)∫ ∞
0

drr3ρ(r|R) = R,

where γ = frac4πR2, R is the e�ective nucleus radius. The following simple

dependence of R on Z assumed:

R = 1.60 · 10−13Z1/3 (cm). (8)

Such de�nition of R is rather conventional. We assume it as some zeroth approx-

imation. Further the derivatives of various characteristics on R are calculated.

They describe the interaction of the nucleus with outer electron; this permits

recalculation of results, when R varies within reasonable limits. The Coulomb

potential for the spherically symmetric density ρ(r|R) is:

Vnucl(r|R) = −
1

r

∫ r

0

dr′r′2ρ(r′|R) +
∫ ∞
r

dr′r′2ρ(r′|R). (9)

It is determined by the following system of di�erential equations ( [1], [7]):

Vnucl(r,R) =
1

r2

∫ r

0

dr′r′2ρ(r′, R) ≡ 1

r2
y(r,R);

y′(r,R) = r2ρ(r,R); (10)

ρ′(r,R) = −8γ5/2 r√
π
exp(−γr2) = −2γrρ(r,R) = − 8r

πr2
ρ(r,R)
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with the boundary conditions:

Vnucl(r, 0) = −
4

πr
;

y(0, R) = 0; (11)

ρ(0, R) =
4γ3/2√
π

=
32

R3
.

4 The Dirac-Slater equation for the three-body atomic system

Consider the Dirac-Slater type equations for a three-electron system 1s2nlj. For-

mally they fall into one-electron Dirac-Slater equations for the orbitals 1s1s and

nlj with the potential:

V (r) = 2V (r|1s) + V (r|1nlj) + Vex(r) + V (r|R). (12)

V (r|R) includes the electrical nuclear potential and the exchange-correlation

potentials; the components of the Hartree potential:

V (r|i) = 1

Z

∫
d−→r ′ ρ(r|i)
|−→r −−→r ′|

, (13)

where ρ(r|i) is the distribution of the electron density in the state |i〉, Vex is

the (Slater type)potential of the exchange inter-electron interaction plus the

correlation potential of the Gunnarsson-Lundqvist type (see details in [1]). The

main exchange e�ect will be taken into account if in the equation for the 1s

orbital we assume

V (r) = V (r|1s) + V (r|nlj) (14)

and in the equation for the nlj orbital

V (r) = 2V (r|1s). (15)

The rest of the exchange and correlation e�ects will be taken into account in the

�rst two orders of the PT by the total inter-electron interaction ( [1], [7]).

The used expression for ρ(r|1s) coincides with the precise one for a one-

electron relativistic atom with a point nucleus. The �niteness of the nucleus and

the presence of the second 1s electron are included e�ectively into the energy

E1s. Actually, for determination of the properties of the outer nlj electron one

iteration is su�cient. Re�nement resulting from second iteration (by evalua-

tions) does not exceed correlation corrections of the higher orders omitted in the

present calculation. The relativistic potential of core (the `screening' potential)

2V (1)(r|1s) = Vscr has correct asymptotic at zero and in the in�nity; at α→ 0 it



Quantum Geometry : New numerical approach 37

Table 1 Results calculation of the nuclear �nite size correction into energy (cm˘1) of the low
transitions for Li-like ions and values of the e�ective radius of nucleus (10˘13 cm)

Z 2s1/2-2p1/2 2s1/2-2p3/2 R

20 −14.9 −15.3 3.26
30 −117.1 −117.7 3.73
41 −658.6 −669.7 4.14
59 −6609.1 −6844.0 4.68
69 −20688.2 −21710.1 4.93
79 −62312.5 −66929.6 5.15
92 −267320.4 −288307.8 5.42

changes to an appropriate potential constructed on the basis of non-relativistic

hydrogen-like functions.

As example in Table 1 the results of our calculation of the nuclear correction

into eigen values of energy (energies of the low transitions) for Li-like ions are

presented. The calculation showed also that a variation of the nuclear radius

on several percents could lead to changing the energies values on dozens of

thousands 103 cm−1. We also note that naturally our numerical data di�er from

the analogous, practically exact data in ( [7]). Surely the authors of ( [7]) have

used more exact and more consistent method, however even su�ciently simpli�ed

model of the Dirac-Slater type allows getting mathematically reasonable results.

However, at whole these questions in more detailed considerations should be

studied in a separate paper.

5 Conclusions

In conclusion let us underline that we have proposed a new procedure for quan-

tization of the stationary and quasistationary states of the relativistic Dirac-

Slater type equation within using a formalism of the gauge-invariant relativistic

many-body perturbation theory ([1], [7]). We have elaborated a new numerical

approach to calculating spectra of the quantum (atomic) systems with an ac-

count of relativistic and exchange-correlation corrections, which is based on the

di�erential equations method by Glushkov-Ivanov [2]. The special procedure is

realized in order to to obtain high-accuracy eigen values and wave function by an

iterative procedure, checking the number of node to insure convergence toward

the right eigenvalue. The illustrative numerical estimates on the nuclear �nite

size correction into eigen values of energy for the low transitions in the spectra

of some Li-like ions are presented and su�ciently well agreed with the available

quite exact data.
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