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Geometry of Chaos I: Theoretical foundations of
a consistent combined approach
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Abstract Problem of a chaos manifestation in dynamical systems is treated

from the geometrical point of view. We present the theoretical foundations of a

consistent chaos-geometrical approach to treating of chaotic dynamical systems.

It combines together the non-linear analysis methods to dynamics, such as

the wavelet analysis, multi-fractal formalism, mutual information approach,

correlation integral analysis, false nearest neighbour algorithm, Lyapunov

exponent's analysis, surrogate data method etc.
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1. Introduction

Predicting a future state of dynamical system under consideration is one of

fundamental purpose of every science (e.g.[1-34]). In fact, the main fundamental

problem of science can be de�ned as: "Is it possible to predict a future behaviour

of process using its past states?". Conventional approach applied to resolve this

problem consists in building an explanatory model using an initial data and pa-

rameterizing sources and interactions between process properties. Unfortunately,

that kind of approach is realized with di�culties, and its outcomes are insu�-

ciently correct; moreover, sources and/or interactions of process cannot always

be exactly de�ned. In our opinion [10,11,27-34], the geometrical approaches in

a chaos theory can be a good fundamental basis for solution of the cited key

evolutionary problem for stochastic dynamical systems. According to modern
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theory of prediction, time series can be considered as random realization, when

the randomness is caused by a complicated motion with many independent de-

grees of freedom. Chaos is alternative of randomness and occurs in very simple

deterministic systems. Although chaos theory places fundamental limitations for

long-rage prediction, it can be used for short-range prediction since ex facte ran-

dom data can contain simple deterministic relationships with only a few degrees

of freedom.

The systematic study of chaos is of recent date, originating in the 1960s. One im-

portant reason for this is that linear techniques, so long dominant within applied

mathematics and the natural sciences, are inadequate when considering chaotic

phenomena since the amazingly irregular behaviour of some non-linear deter-

ministic systems was not appreciated and when such behaviour was manifest in

observations, it was typically explained as stochastic. It is well known the meteo-

rological example of the chaos problem. Namely, starting from the meteorologist

E.Lorenz, who observed extreme sensitivity to changes to initial conditions of

a simple non-linear model simulating atmospheric convection, the experimen-

tal approach relies heavily on the computational study of chaotic systems and

includes methods for investigating potential chaotic behaviour in observational

time series [1-12]. During the last two decades, many studies in various �elds of

science have appeared, in which chaos theory was applied to a great number of

dynamical systems, including those are originated from nature (e.g. [1-18]). As

the illustrative examples, one could cite the corresponding papers in a �eld of

mathematical statistics and economics, �nancial analysis, geophysics, hydrome-

teorology and climatology, theoretical and experimental physics and chemistry,

evolutionary biology etc [1-34]. The above-mentioned studies concerning the key

dynamical characteristics of di�erent systems allow concluding that methodology

from chaos theory can be applied and the short-range forecast by the non-linear

prediction method can be satisfactory. The outcomes of such studies are very

encouraging, as they not only revealed that the dynamics of the apparently ir-

regular phenomena could be understood from a chaotic deterministic point of

view but also reported very good predictions using such an approach for di�erent

systems. Chaos theory establishes that apparently complex irregular behaviour

could be the outcome of a simple deterministic system with a few dominant non-

linear interdependent variables. At the same time the methods applied to the

di�erent chaotic dynamical systems in the above cited papers are characterized

as su�ciently correct, but one-sized and limited ones. In the series of papers

(e.g. [10,11,24-34]) it has been proposed an idea to combine di�erent non-linear
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analysis and chaos theory methods and schemes (such as the wavelet analysis,

multi-fractal formalism, mutual information approach, correlation integral anal-

ysis, false nearest neighbour algorithm, Lyapunov exponent's analysis, memory

matrix formalism, Green's function constructive method, evolutionary di�eren-

tial equations approach, surrogate data method etc) into the uniform, universal

consistent approach to any chaotic dynamical systems and applied in the partial

problems of environmental science and physics of systems and elements. Using

these papers here we present the chaos�geometrical theoretical foundations of

an advanced version of such a combined method. In the following papers the

illustrative numerical examples concerning di�erent chaotic dynamical systems

will be presented.

2. Combined chaos-geometrical approach to dynamical systems:

Theoretical foundations

2.1. Introducing remarks

For de�niteness, we consider some chaotic dynamical system and suppose that

the typical dynamics time series for key characteristics are known (from exper-

iment or bymeans numerical modelling). It is clear that a visual inspection of

the (irregular) amplitude level series does not provide any clues regarding its

dynamical behaviour, whether chaotic or stochastic. To detect some regularity

(or irregularity) in the time series, the Fourier power spectrum is often analyzed,

however it often fails too. Chaotic signals may also have sharp spectral lines but

even in the absence of noise there will be continuous part (broadband) of the

spectrum. The broad power spectrum falling as a power of frequency is a �rst

indication of chaotic behaviour, though it alone does not characterize chaos [2-

4,10]. From this point of view, the corresponding series analyzed in this study is

presumably chaotic. However, more well-de�ned conclusion on the dynamics of

the time series can be made after the data will be treated by non-linear analysis

methods.

Let us consider scalar measurements s(n) = s(t0 + n∆t) = s(n), where t0

is the start time, ∆t is the time step, and is n the number of the measurements.

In a general case, s(n) is any time series, particularly the amplitude level. Since

processes resulting in the chaotic behaviour are fundamentally multivariate, it is

necessary to reconstruct phase space using as well as possible information con-

tained in the s(n). Such a reconstruction results in a certain set of d -dimensional

vectors y(n) replacing the scalar measurements. Packard et al. [14] introduced

the method of using time-delay coordinates to reconstruct the phase space of

an observed dynamical system. The direct use of the lagged variables s(n + τ),
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where τ is some integer to be determined, results in a coordinate system in which

the structure of orbits in phase space can be captured. Then using a collection

of time lags to create a vector in d dimensions,

y(n) = s(n), s(n + τ), s(n + 2τ), . . . , s(n + (d− 1)τ), (1)

the required coordinates are provided. In a nonlinear system, the s(n + j τ) are

some unknown nonlinear combination of the actual physical variables that com-

prise the source of the measurements. The dimension d is called the embedding

dimension, dE . Example of the Lorenz attractor given by Abarbanel et al. [12,13]

is a good choice to illustrate the e�ciency of the method.

2.2. Choosing time lag.

According to Takens [19] and Mane [20] any time lag will be acceptable is not

terribly useful for extracting physics from data. If τ is chosen too small, then the

coordinates s(n + jτ) and s(n + (j + 1)τ) are so close to each other in numerical

value that they cannot be distinguished from each other. Similarly, if τ is too

large, then s(n + jτ) and s(n + (j + 1)τ) are completely independent of each

other in a statistical sense. Also, if τ is too small or too large, then the correlation

dimension of attractor can be under- or overestimated respectively. It is therefore

necessary to choose some intermediate (and more appropriate) position between

above cases. First approach is to compute the linear autocorrelation function

CL(δ) =
1
N

∑N
m=1[s(m+ δ)− s̄][s(m)− s̄]

1
N

∑N
m=1[s(m)− s̄]2

, (2)

where s̄ = 1
N

∑N
m=1 s(m),

and to look for that time lag where CL(δ) �rst passes through zero. This gives

a good hint of choice for τ at that s(n + j τ) and s(n + (j + 1)τ) are linearly

independent. However, a linear independence of two variables does not mean

that these variables are nonlinearly independent since a nonlinear relationship

can di�ers from linear one. It is therefore preferably to utilize approach with a

nonlinear concept of independence, e.g. the average mutual information. Brie�y,

the concept of mutual information can be described as follows (e.g.[10,16]). Let

there are two systems, A and B, with measurements ai and bk. The amount one

learns in bits about a measurement of ai from a measurement of bk is given by

the arguments of information theory as

IAB(ai, bk) = log2

(
PAB(ai, bk)

PA(ai)PB(bk)

)
, (3)
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where the probability of observing a out of the set of all A is PA(ai), and the

probability of �nding b in a measurement B is PB(bi), and the joint probability

of the measurement of a and b is PAB(ai, bk). The mutual information I of two

measurements ai and bk is symmetric and non-negative, and equals to zero if only

the systems are independent. The average mutual information between any value

ai from system A and bk from B is the average over all possible measurements

of IAB(ai, bk),

IAB(τ) =
∑
ai,bk

PAB(ai, bk)IAB(ai, bk) (4)

.

To place this de�nition to a context of observations from a certain physical

system, let us think of the sets of measurements s(n) as the A and of the mea-

surements a time lag τ later, s(n + τ), as B set. The average mutual information

between observations at n and n + τ is then

IAB(τ) =
∑
ai,bk

PAB(ai, bk)IAB(ai, bk) (5)

.

Now we have to decide what property of I (τ) we should select, in order to

establish which among the various values of τ we should use in making the

data vectors y(n). In ref. [18] it has been suggested, as a prescription, that

it is necessary to choose that τ where the �rst minimum of I (τ) occurs. On

the other hand, the autocorrelation coe�cient failed to achieve zero, i.e. the

autocorrelation function analysis not provides us with any value of τ . Such an

analysis can be certainly extended to values exceeding 1000, but it is known

[18] that an attractor cannot be adequately reconstructed for very large values

of τ . The mutual information function usually exhibits an initial rapid decay

(up to a lag time of about 10) followed more slow decrease before attaining

near-saturation at the �rst minimum.

One could remind that the autocorrelation function and average mutual infor-

mation can be considered as analogues of the linear redundancy and general

redundancy, respectively, which was applied in the test for nonlinearity. If a

time series under consideration have an n-dimensional Gaussian distribution,

these statistics are theoretically equivalent. The general redundancies detect all

dependences in the time series, while the linear redundancies are sensitive only

to linear structures. Further, a possible nonlinear nature of process resulting in

the vibrations amplitude level variations can be concluded.
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2.3. Choosing embedding dimension. Grassberger and Procaccia algo-

rithm

The goal of the embedding dimension determination is to reconstruct a Euclidean

space Rd large enough so that the set of points dA can be unfolded without am-

biguity. In accordance with the embedding theorem, the embedding dimension,

dE , must be greater, or at least equal, than a dimension of attractor, dA, i.e.

dE > dA. In other words, we can choose a fortiori large dimension dE , e.g. 10

or 15, since the previous analysis provides us prospects that the dynamics of

our system is probably chaotic. However, two problems arise with working in

dimensions larger than really required by the data and time-delay embedding

[10,11,17].

First, many of computations for extracting interesting properties from the

data require searches and other operations in Rd whose computational cost rises

exponentially with d. Second, but more signi�cant from the physical point of

view, in the presence of noise or other high dimensional contamination of the

observations, the extra dimensions are not populated by dynamics, already cap-

tured by a smaller dimension, but entirely by the contaminating signal. In too

large an embedding space one is unnecessarily spending time working around

aspects of a bad representation of the observations which are solely �lled with

noise. It is therefore necessary to determine the dimension dA.

There are several standard approaches to reconstruct the attractor dimension

(see, e.g., [8-20]), but let us consider in this study two methods only. The cor-

relation integral analysis is one of the widely used techniques to investigate the

signatures of chaos in a time series. The analysis uses the correlation integral,

C (r), to distinguish between chaotic and stochastic systems. To compute the

correlation integral, the algorithm of Grassberger and Procaccia [17] is the most

commonly used approach. According to this algorithm, the correlation integral

is

C(r) = lim
N→∞

2

N(n− 1)

∑
i, j

(1 ≤ i < j ≤ N)

H (r − ||yi − yj ||) (6)

,

where H is the Heaviside step function with H (u) = 1 for u > 0 and H (u) = 0

for u ≤ 0, r is the radius of sphere centered on yi or yj , and N is the number

of data measurements. If the time series is characterized by an attractor, then

the integral C (r) is related to the radius r given by
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d = lim

r → 0

N →∞

logC(r)

log r
(7)

,

where d is correlation exponent that can be determined as the slop of line in the

coordinates

log C (r) versus log r by a least-squares �t of a straight line over a certain range

of r, called the scaling region. If the correlation exponent attains saturation with

an increase in the embedding dimension, then the system is generally considered

to exhibit chaotic dynamics. The saturation value of the correlation exponent

is de�ned as the correlation dimension (d2) of the attractor. The nearest inte-

ger above the saturation value provides the minimum or optimum embedding

dimension for reconstructing the phase-space or the number of variables neces-

sary to model the dynamics of the system. On the other hand, if the correlation

exponent increases without bound with increase in the embedding dimension,

the system under investigation is generally considered stochastic. The correla-

tion exponent value increases with embedding dimension up to a certain value,

and then saturates beyond that value. The saturation of the correlation expo-

nent beyond a certain embedding dimension is an indication of the existence

of deterministic dynamics. For example, the saturation value of the correlation

exponent, i.e. correlation dimension of attractor, for the amplitude level series

is about a few units (say, four) and occurs at the embedding dimension value

of Nd. The low, non-integer correlation dimension value indicates the existence

of low-dimensional chaos in the dynamics of the concrete system. The nearest

integer above the correlation dimension value can be considered equal to the

minimum dimension of the phase-space essential to embed the attractor. The

value of the embedding dimension at which the saturation of the correlation

dimension occurs is considered to provide the upper bound on the dimension of

the phase-space su�cient to describe the motion of the attractor. Furthermore,

the dimension of the embedding phase-space is equal to the number of variables

present in the evolution of the system dynamics. The results of such studying

can indicate that to model the dynamics of process resulting in the amplitude

level variations the minimum number of variables essential is equal to four and

the number of variables su�cient is equal to Nd. Therefore, the amplitude level

attractor should be embedded at least in a four-dimensional phase-space. The

results can indicate also that the upper bound on the dimension of the phase-

space su�cient to describe the motion of the attractor, and hence the number
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of variables su�cient to model the dynamics of process resulting in the level

variations is equal to 6. There are certain important limitations in the use of

the correlation integral analysis in the search for chaos. For instance, the se-

lection of inappropriate values for the parameters involved in the method may

result in an underestimation (or overestimation) of the attractor dimension [17].

Consequently, �nite and low correlation dimensions could be observed even for

a stochastic process. To verify the results obtained by the correlation integral

analysis, one should use the surrogate data method.

2.4. The surrogate data method.

The method of surrogate data [16] is an approach that makes use of the substi-

tute data generated in accordance to the probabilistic structure underlying the

original data. This means that the surrogate data possess some of the properties,

such as the mean, the standard deviation, the cumulative distribution function,

the power spectrum, etc., but are otherwise postulated as random, generated

according to a speci�c null hypothesis. Here, the null hypothesis consists of a

candidate linear process, and the goal is to reject the hypothesis that the orig-

inal data have come from a linear stochastic process. One reasonable statistics

suggested by Theiler et al. [23] is obtained as follows.

If we denote Qorig as the statistic computed for the original time series and

Qsi for the ith surrogate series generated under the null hypothesis and let µs

and σs denote, respectively, the mean and standard deviation of the distribution

of Qs, then the measure of signi�cance S is given by

S =
|Qorig − µs|

σs
. (8)

An S value of ∼2 cannot be considered very signi�cant, whereas an S value of

∼10 is highly signi�cant. The details on the null hypothesis and surrogate data

generation are described in ref. [10,23]. To detect nonlinearity in the amplitude

level data, the one hundred realizations of surrogate data sets were generated

according to a null hypothesis in accordance to the probabilistic structure under-

lying the original data. The correlation integrals and the correlation exponents,

for embedding dimension values from 1 to 20, were computed for each of the

surrogate data sets using the Grassberger-Procaccia algorithm. The relationship

between the correlation exponent values and the embedding dimension values for

the original data set and mean values of the surrogate data sets as well as for one

surrogate realization gives the necessary foundations for adequate conclusion.

Often, a signi�cant di�erence in the estimates of the correlation exponents, be-

tween the original and surrogate data sets, can be observed. In the case of the
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original data, a saturation of the correlation exponent is observed after a certain

embedding dimension value (i.e., 6), whereas the correlation exponents computed

for the surrogate data sets continue increasing with the increasing embedding

dimension. The high signi�cance values of the statistic indicate that the null

hypothesis (the data arise from a linear stochastic process) can be rejected and

hence the original data might have come from a nonlinear process.

It is worth consider another method for determining dE that comes from

asking the basic question addressed in the embedding theorem: when has one

eliminated false crossing of the orbit with itself which arose by virtue of having

projected the attractor into a too low dimensional space? By examining this

question in dimension one, then dimension two, etc. until there are no incorrect

or false neighbours remaining, one should be able to establish, from geometrical

consideration alone, a value for the necessary embedding dimension. Such an

approach was described by Kennel et al. [13]. In dimension d each vector

y(k) = s(k), s(k + τ), s(k + 2τ), . . . , s(k + (d− 1)τ) (9)

has a nearest neighbour yNN (k) with nearness in the sense of some distance

function. The Euclidean distance in dimension d between y(k) and yNN (k) we

call Rd(k):

R2
d(k) = [s(k)− sNN (k)]2 + [s(k + τ)− sNN (k + τ)]2 +

+...+ [s(k + τ(d− 1))− sNN (k + τ(d− 1))]2. (10)

Rd(k) is presumably small when one has a lot a data, and for a dataset

with N measurements, this distance is of order 1/N 1/d . In dimension d + 1

this nearest-neighbour distance is changed due to the (d + 1 )st coordinates

s(k + dτ) and sNN (k + dτ) to

R2
d+1(k) = R2

d(k) + [s(k + dτ)− sNN (k + dτ)]2 (11)

.

We can de�ne some threshold size RT to decide when neighbours are false. Then

if

|s(k + dτ)− sNN (k + dτ)|
Rd(k)

> RT (12)

,

the nearest neighbours at time point k are declared false. Kennel et al.[13] showed

that for values in the range 10 ≤ RT ≤ 50 the number of false neighbours
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identi�ed by this criterion is constant. In practice, the percentage of false nearest

neighbours is determined for each dimension d . A value at which the percentage

is almost equal to zero can be considered as the embedding dimension. In refs.

[33,34] under studying the chaotic dynamics of the quantum generators was

shown that the percentage of false neighbours drops to almost zero at 4 or 5,

i.e. a four or �ve-dimensional phase-space is necessary to represent the dynamics

(or unfold the attractor) of the amplitude level series. From the other hand, the

mean percentage of false nearest neighbours computed for the surrogate data

sets decreases steadily but at 20 is about 35%. Such a result seems to be in

close agreement with that was obtained from the correlation integral analysis,

providing further support to the observation made earlier regarding the presence

of low-dimensional chaotic dynamics in the amplitude level variations.

2.5. The Lyapunov's exponents.

As it is very well known, the Lyapunov exponents are the dynamical invariants

of the nonlinear system (see, e.g. [1,2,8-10,21,22]). In a general case, the orbits

of chaotic attractors are unpredictable, but there is the limited predictability

of chaotic physical system, which is de�ned by the global and local Lyapunov

exponents. A negative exponent indicates a local average rate of contraction

while a positive value indicates a local average rate of expansion. In the chaos

theory, the spectrum of Lyapunov exponents is considered a measure of the

e�ect of perturbing the initial conditions of a dynamical system. Note that both

positive and negative Lyapunov exponents can coexist in a dissipative system,

which is then chaotic.

Since the Lyapunov exponents are de�ned as asymptotic average rates, they

are independent of the initial conditions, and therefore they do comprise an

invariant measure of attractor. In fact, if one manages to derive the whole spec-

trum of Lyapunov exponents, other invariants of the system, i.e. Kolmogorov

entropy and attractor's dimension can be found. The Kolmogorov entropy, K ,

measures the average rate at which information about the state is lost with time.

An estimate of this measure is the sum of the positive Lyapunov exponents. The

inverse of the Kolmogorov entropy is equal to the average predictability. The

estimate of the dimension of the attractor is provided by the Kaplan and Yorke

conjecture (see [24]):

dL = j +

∑j
α=1 λα
|λj+1|

(13)

,
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where j is such that
∑j
α=1 λα > 0 and

∑j+1
α=1 λα < 0, and the Lyapunov expo-

nents λα are taken in descending order.

There are several approaches to computing the Lyapunov exponents (see, e.g., [8-

10,24,31-34]). One of them is in computing the whole spectrum and based on the

Jacobin matrix of the system function. To calculate the spectrum of Lyapunov

exponents from the amplitude level data, one could determine the time delay

τ and embed the data in the four-dimensional space. In this point it is very

important to determine the Kaplan-Yorke dimension and compare it with the

correlation dimension, de�ned by the Grassberger-Procaccia algorithm.

The estimations of the Kolmogorov entropy and average predictability can fur-

ther show a limit, up to which the amplitude level data can be on average pre-

dicted. Surely, the important moment is a check of the statistical signi�cance of

results. It is worth to remind that results of state-space reconstruction are highly

sensitive to the length of data set (i.e. it must be su�ciently large) as well as to

the time lag and embedding dimension determined. Indeed, there are limitations

on the applicability of chaos theory for observed (�nite) time series arising from

the basic assumptions that the time series must be in�nite. A �nite and small

data set may probably results in an underestimation of the actual dimension

of the process. The statistical convergence tests, described here, together with

surrogate data approach that, was above applied, can provide the satisfactory

signi�cance of the investigated data regarding the state-space reconstruction.

3. Conclusions and discussion

Thus, we considered a problem of a chaos manifestation in dynamical systems

from the geometrical point of view and presented formally theoretical founda-

tions of a consistent chaos-geometrical approach to treating of chaotic dynamical

systems. This approach combines together the non-linear analysis methods to

dynamics, such as the wavelet analysis, multi-fractal formalism, mutual informa-

tion approach, correlation integral analysis, false nearest neighbour algorithm,

Lyapunov's exponent's analysis, surrogate data method etc. Their using allows

to study in details an existence of chaotic behaviour in the non-linear dynam-

ical systems on the basis of temporal series. The mutual information approach

provided a time lag which is needed to reconstruct phase space. Such an ap-

proach allowed concluding the possible nonlinear nature of process resulting in

the amplitude level variations. The correlation dimension method provided a

low fractal-dimensional attractor thus suggesting a possibility of the existence

of chaotic behaviour. The method of surrogate data, for detecting nonlinearity,

provided signi�cant di�erences in the correlation exponents between the original
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data series and the surrogate data sets. This �nding indicates that the null hy-

pothesis (linear stochastic process) can be rejected. The Lyapunov's exponents

analysis usually can support the conclusion regarding a chaos existence in a

system. In a whole a presented combined approach can provide an alternative

approach for characterizing and modelling the dynamics of chaotic processes in

the complicated system in relation to the concrete, as a rule, limited physical

and mathematical models of these processes.
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