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Matter from Toric Geometry and its Search at the
LHC

T.V. Obikhod

Abstract Toric geometry is applied for construction the enhanced

gauge groups in F-theory compacti�ed on elliptic Calabi-Yau four-

folds. The Hodge numbers calculated from the polyhedra for the chain

H = SU(1), ..., SU(5), SO(10), E6, E7 determine the number of tensor multi-

plets, vector multiplets and hypermultiplets of solitonic states that appear from

singularities of elliptic �bration. Due to duality between the compacti�cation

of E8 × E8 heterotic string and the type IIA string compacti�cation on a

Calabi-Yau manifold there is a natural sequence of E-group embeddings which

gives the matter content of Minimal Supersymmetric Standard Model and the

possibility of searching for supersymmetry at the LHC.

Keywords Toric geometry · Calabi-Yau manifold · Singularities of elliptic �-
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1 Introduction

At high energy, the three gauge interactions which de�ne the electromagnetic,

weak, and strong interactions, are merged into one single interaction charac-

terized by one larger gauge symmetry Grand Uni�ed Theory, (GUT) [1] and

thus one uni�ed coupling constant. This gauge coupling uni�cation works quite

well in the Minimal Supersymmetric Standard Model (MSSM) motivating not

only grand uni�cation (or some superstring theories with similar properties) but

also that supersymmetry emerges. Supersymmetry refers to possible relations

between the spectrum and interactions of fermions (half-integer spin particles)

and bosons (integer spin particles). It can be viewed as a space-time extension of

the Poincare (Lorentz plus translational invariance) group, involving new anti-

commuting dimensions. Under reasonable assumptions it is the unique extension

of the usual Poincare and internal symmetries of �eld theory. Supersymmetry

provides a possible route to unify gravity with the other interactions through

superstring theory [2]. For a consistent formulation superstring theories require

additional dimensions and there are actually a large number of string theories,

many of which include underlying grand uni�cation symmetries (GUT). One of

the branches of string theory is F-theory [3] which allows string theorists to con-

struct new realistic vacua - in the form of F-theory compacti�ed on elliptically

�bered Calabi-Yau fourfolds.

2 Re�exive Polyhedra as Geometric Realization of

Calabi-Yau Fourfolds

The elegant algorithm for obtaining the enhanced gauge groups in F-theory has

been proposed by Candelas et al. [4,5]. We consider F-theory of the form R3,1×X
[6,7], whereX is a Calabi-Yau fourfold. We consider superstring compacti�cation

on the Calabi-Yau fourfold X represented as the elliptic �bration over a complex

threefold - the Hirzebruch surface Fn,

ε → X

↓
Fn

We also take X to be a local elliptic K3-�bration over S of the form

Y → X

↓
S
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where we model the local elliptically-�bered K3-surface Y on a hypersurface

in C 3
with an isolated ADE singularity. A great many Calabi-Yau manifolds

are known in terms of toric data [8] and there is the correspondence, pointed

out by Batyrev, between Calabi-Yau manifolds and re�exive polyhedra 4 [9].

To a Calabi-Yau manifold (of any dimension) de�ned as a hypersurface in a

weighted projective space one can associate its Newton polyhedron, which we

denote by 4. The Newton polyhedron is often re�exive and when it is we may

de�ne the dual or polar polyhedron which we denote by ∇. Polyhedra 4 and

∇ are re�exive, when fourfold X is simultaneously K3-�bration and can also be

viewed as an elliptic �bration over the Hirzebruch surface F2k. By means of a

computer program we have computed the dual polyhedra for the fourfolds

X18k+18(1, 1, 1, 3k, 6k + 6, 9k + 9) (1)

(k = 1, . . . , 6).

The following observations summarize the structure of the polyhedron 5:
1. Omitting the �rst two points and the last point of 5 leaves us with the dual

polyhedron 35 of the K3 surface X12(1, 1, 4, 6) ;

2. Omitting the �rst three points and the last two points of 5 leaves us with

the dual polyhedron 25 of the torus X6(1, 2, 3) ;

3. The polyhedron 35 is divided into a `top' and a `bottom' by the polyhedron
25 and we may write

35 = 5H
bot ∪5k=1

top ,

where 5k=1
top depends only on k = 1 while 5H

bot depends only on the enhanced

gauge group H.

Let us introduce special points

pt
(j)
1 = ( 0, 0,−j, 2, 3) ,

pt
(j)
2 = ( 0, 0,−j, 1, 2) ,

pt
(j)
3 = ( 0, 0,−j, 1, 1) ,

pt
(j)
4 = ( 0, 0,−j, 0, 1) ,

pt
(j)
5 = ( 0, 0,−j, 0, 0) ,

pt
(j)
6 = ( 0, 0,−j,−1, 0) ,

pt
(j)
7 = ( 0, 0,−j, 0,−1) ,

where j is a positive integer.

We consider now the possibility of adding to 25 combinations of the points

pt
(j)
r in all possible ways such that the bottom corresponds to a re�exive poly-

hedron. Tables 1 and 2 show the allowed bottoms leading to enhanced gauge

groups H. Note that in each case the points of 25 are understood and pt
(j)
r
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implies the presence of pt
(j−1)
r , . . . , pt

(1)
r .

Applying the analogous consideration to tops we obtain the following gauge

content for fourfolds (1) :

H × SU(1) for k = 1,

H × SO(8) for k = 2,

H × E6 for k = 3,

H × E7 for k = 4,

H × E8 for k = 5,

H × E8 for k = 6.

The relations between the bottoms and the enhanced gauge groups are presented

in Table 1.

H Bottom

SU(1) {pt
(1)
1 }

SU(2) {pt(1)1 , pt
(1)
2 }

SU(3) {pt(1)1 , pt
(1)
2 , pt

(1)
3 }

SU(4) {pt(1)1 , pt
(1)
2 , pt

(1)
3 , pt

(1)
4 }

SU(5) {pt(1)1 , pt
(1)
2 , pt

(1)
3 , pt

(1)
4 , pt

(1)
5 }

SU(6) {pt(1)1 , pt
(1)
2 , pt

(1)
3 , pt

(1)
4 , pt

(1)
5 , pt

(1)
6 }

SO(10) {pt(2)1 , pt
(2)
2 , pt

(1)
3 , pt

(1)
4 , pt

(1)
5 }

E6 {pt(3)1 , pt
(2)
2 , pt

(2)
3 , pt

(1)
4 , pt

(1)
5 }

E7 {pt(4)1 , pt
(3)
2 , pt

(2)
3 , pt

(2)
4 , pt

(1)
5 }

E8 {pt(6)1 , pt
(4)
2 , pt

(3)
3 , pt

(2)
4 , pt

(1)
5 }

Table 1: The relation between the bottoms

and the enhanced gauge groups.

3 Nesting of polyhedra

We consider now the possibility of adding combinations of the points in all

possible ways such that the bottom corresponds to a re�exive polyhedron. All

the groups do appear in Table 1 and, as a matter of consistency, we see the

inclusions

E7 ⊃ E6 ⊃ SO(10) ⊃ SU(5) ⊃ SU(4) ⊃ SU(3) ⊃ SU(2) ⊃ SU(1) ,

as inclusions of the respective polyhedra. Thus we can see the duality between

compacti�cations of the E8 × E8 heterotic string and the type IIA string com-

pacti�ed on a Calabi-Yau manifold. The new contribution here is the observation
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that sequences of re�exive polyhedra associated to these spaces are nested in such

a way as to re�ect heterotic perturbative and non-perturbative processes. This

qualitative observation is supported by quantitative agreement of the computed

from the polyhedra Hodge numbers and the number of tensor, vector and hyper-

multiplets in the heterotic side. It leads also to the observation that the Dynkin

diagrams for the groups may be read o� from the polyhedra. Table 2 for the

chains of fourfolds demonstrates the nesting of polyhedra.

Group Matter content

SU(2) (6n+ 2)2

SU(3) (6n+ 18)3

SU(4) (n+ 2)6+(4n+ 16)4

SU(5) (3n+ 16)5+(2 + n)10

SO(10) (n+ 4)16+(n+ 6)10

E6 (n+ 6)27

E7 (n2 + 4)56

Table 2 : Matter content of models calculated from the polyhedra for

the chain H = SU(1), . . . , SU(5), SO(10), E6, E7 .

For the chain H = SU(1), . . . , SU(5), SO(10), E6, E7 we can determine the

number of multiplets of solitonic states that appear from singularities of elliptic

�bration. Nesting of polyhedra is interpreted as phase transition. This phase

transition can be interpreted as a group chain of spontaneous symmetry breaking

SO(10)→ SU(5)→ SU(3)× SU(2)× U(1)

Group SO(10) has group SU(5) as its subgroup:

16 = 10 + 5 + 1 .

Thus 16 multiplet of fermions consists of three SU(5)multiplets. Particle content

of Minimal Supersymmetric Standard Model (MSSM) can be presented in terms

of SU(5) multiplets

3× (24 + 5H + 5H + 5M + 5M + 10M + 10M ) ,

where 5H and 5H are Higgs multiplets, 5M and 10M are multiplets of quark and

lepton superpartners. The transition between SU(5) and SU(3)×SU(2)×U(1)

can be realised with the help of partial widths of superpartners calculations.

Using this restricted parameter set of MSSM model

M0 = 800 GeV , M1/2 = 650 GeV ,

A0 = 0 , tanβ = 10 , sgn(µ) = +1 .
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it is possible to calculate partial widths of superpartners by application of the

computer program SDECAY [10]. These partial widths are shown in Tables 3,

4.

channel BR channel BR

ũR χ̃0
1u 0.997 χ̃0

4u 0.002

d̃R χ̃0
1d 0.997 χ̃0

4d 0.002

c̃R χ̃0
1c 0.997 χ̃0

4c 0.002

s̃R χ̃0
1s 0.997 χ̃0

4s 0.002

Table 3 : Partial widths of superpartners

channel BR channel BR

g̃ b̃1b
∗ 0.074 t̃1t

∗ 0.425

b̃∗1b 0.074 t̃∗1t 0.425

Table 4 : Partial widths of superpartners

4 Conclusion

Thus we see the duality between the compacti�cations of the E8 ×E8 heterotic

string and the type IIA string compacti�cation on a Calabi-Yau manifold. The

observations concerning this duality are the subject of the present article: we have

a correspondence between re�exive polyhedra, 4, and Calabi-Yau manifolds.

Combining this with the correspondence between vector bundles and Calabi-Yau

manifolds gives a correspondence between vector bundles and re�exive polyhedra

4. It is known also that the moduli spaces of Calabi-Yau manifolds form a web

in which continuous transitions between di�erent Calabi-Yau manifolds (phases)

occur [11]. Indeed it seems likely that all Calabi-Yau manifolds are connected by

processes of this type [12]. In virtue of duality this web structure must exist also

on the heterotic side, though the physical picture is di�erent. Indeed, the space of

heterotic vacua also forms a web in which di�erent models are connected along

branches parametrized by vacuum expectation values of scalars in vector and

hypermultiplets. Subsequently, it was argued that the appearance of perturbative

heterotic groups in the chains could be explained in the Calabi-Yau picture

[4]. Indeed, there is a natural sequence of E-group embeddings which give the

Standard Model gauge group and matter structure in an elegant manner:

E3 × U(1) ⊂ E4 ⊂ E5 ⊂ E6 ⊂ . . .
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where E3 = SU(3)×SU(2) denotes the non-abelian gauge group of the Standard

Model, E4 = SU(5) and E5 = SO(10). Both gauge coupling uni�cation as well

as the matter content of the Standard Model hint at the presence of a uni�ed

gauge group structure at high energies. From this perspective, we interpret the

uni�cation of the gauge couplings in the minimal supersymmetric extension of

the Standard Model as evidence that instead of the in�nitely complex variety of

classical groups and matter which can appear in string theory, the list of relevant

simple gauge groups is limited to the �nite number of exceptional gauge groups

and their subgroups. This provides an economical way to break the exceptional

gauge group to gauge symmetries closer to the MSSM. One of the nicest qualities

of supersymmetry is that so much is known about it already, despite the present

lack of direct experimental evidence. The interactions of the Standard Model

particles and their superpartners are �xed by supersymmetry, up to mass mixing

e�ects due to supersymmetry breaking. Even the terms and stakes of many of

the important outstanding questions, especially the paramount issue "How is

supersymmetry broken?", are already rather clear. Analyses of LHC searches

corresponding to ∼ 5 fb−1 at
√
s = 7 TeV have not found any superpartners,

and have put strong lower bounds on the masses of squarks and gluinos in

large classes of models. The most common templates used for reporting the

results of experimental searches are the MSUGRA scenario with new parameters

m0,m1/2, A0, tanβ,Arg(µ). However, one should not lose sight of the fact that

the only indispensable idea of supersymmetry is simply that of a symmetry

between fermions and bosons. If supersymmetry is experimentally veri�ed, the

discovery will not be an end, but rather a beginning in high energy physics. It

seems likely to present us with questions and challenges that we can only guess at

presently. The measurement of sparticle masses, production cross-sections, and

decay modes will rule out some models for supersymmetry breaking and lend

credence to others. We will be able to test the principle of R-parity conservation,

the idea that supersymmetry has something to do with the dark matter, and

possibly make connections to other aspects of cosmology including baryogenesis

and in�ation.
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