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Quantum Geometry: New approach to quantiza-
tion of quasi-stationary states of Dirac equation
for relativistic many-body system and calculating
some spectral parameters
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Abstract New advanced approach to calculating spectra of the relativistic

many-body atomic system with an account of radiative corrections is presented.

The approach is based on the formalism of the gauge-invariant quantum-

electrodynamical many-body perturbation theory. An advanced procedure for

quantization of the quasi-stationary states of the Dirac equation for relativistic

many-body atomic system is presented. The numerical illustrations for some

heavy multicharged ions are listed.
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1 Introduction

A development of the consistent methods of calculating a spectra of energy

eigen values for relativistic Hamiltonian of the many-body systems with ac-

count of the nuclear and radiative corrections is still actual and fundamentally

important problem of the modern quantum geometry and relativistic quantum

theory of the many-fermion systems (see, for example, [1]�[8]). Theoretical meth-

ods used to calculate the energy parameters of the heavy �nite many-body

fermi-systems are traditionally divided into a few groups (see, for example, [1]�

[12]). The relativistic Hartree-Fock (RHF) and Dirac-Fock (DF) approaches are

the most popular ones and often used to determine an energy spectrum and
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di�erent spectral parameters of the relativistic many-body systems. The one-

and two-body relativistic e�ects are taken into account practically precisely in

the RHF and DF calculation schemes. One could remind a few very general

and important computer codes for relativistic and quantum-electrodynamical

(QED) calculations of spectra for multi-electron systems developed in the Ox-

ford, German-Russian and Odessa groups etc ("GRASP", "Dirac"; "BERTHA",

"QED", "Dirac"; "Superatom-Odessa") (see, for example, [1]�[12] and references

there). The useful overview of the relativistic electronic structure theory is pre-

sented in refs. (see, for example, [1], [2], [5]�[10]). from the QED point of view.

Further, in the study of lower states for multielectron systems with Z ≤ 40 an

expansion into double series of the PT on the parameters 1/Z, αZ (α is the �ne

structure constant) turned out to be quite useful. It allows to determine contri-

butions of the di�erent expansion terms: relativistic, QED contributions as the

functions of Z. A great interest attracts developing the high precise methods

of account for the radiative and nuclear e�ects in a case of the heavy quan-

tum systems to calculate adequately their energy spectra. Speech is about the

radiative or QED e�ects, in particular, the vacuum polarization (VP) contribu-

tion, correction on the nuclear �nite size for heavy elements and its account for

di�erent spectral properties of these systems etc ( [1]�[14]). In Refs. [2]�[6] it

has been presented a new advanced approach to calculating spectra of the rela-

tivistic many-body atomic system with an account of electroweak and hyper�ne

interactions, which is based on the QED perturbation theory and generalized

relativistic mean �eld nuclear approach. In a case of the relativistic one-electron

systems the one-particle Dirac equation can be naturally considered as the most

exact and correct. A consistent treating relativistic many-body systems requires

a development of the corresponding approximate methods and its correctness

should be provided as by the basic fundamental properties as the direct numeri-

cal calculation and comparison with empirical data. In this paper, which goes on

our previous works ( [3]�[6]), we present a new, advanced ab initio approach to

relativistic calculation of the spectra for heavy many-body ions with an account

of relativistic, nuclear, QED e�ects. Within it an advanced procedure for quan-

tization of the quasi-stationary states of the Dirac equation is proposed. The

numerical illustrations of for a number of the heavy lithium-like multicharged

ions are listed.
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2 Quantization of states of the relativistic many-body Dirac equation

with advanced nuclear and vacuum-polarization potentials

In this section we describe the key moments of our approach to description of

the relativistic heavy many-body atomic systems with account of the relativistic

and nuclear e�ects. The corresponding procedure for quantization of the quasi-

stationary (stationary) states of the relativistic Dirac equation with an account

of the cited e�ects by means of the advanced potentials is brie�y described too.

Foe de�niteness let us consider a heavy lithium-like ion. The relativistic wave

function zeroth basis is found from the Dirac equation with the total potential,

which must include the electric and vacuum-polarization potentials of a nucleus

and a self-consistent potential of electron subsystem. Surely, an e�ect of the

�nite nuclear size should be accounted for (see below). The standard relativistic

Dirac equation for the large F and small G components can be represented as

follows (see details, for example, in [5]):

f ′ = −(χ+ |χ|)f
r
− αZV g −

(
αZEnχ +

2

αZ

)
g,

g′ = (χ− |χ|)g
r
− αZV f + αZEnχf. (1)

where α is the �ne structure constant, Enχ is one-electron energy without

the rest energy and the moment number is as follows:

χ =

{
−(1 + 1), j > 1

1, J < 1
(2)

Here we have used the Coulomb units (C.u.) are used; 1 C.u. of length = 1

a.u. Z; 1 C.u. of energy = 1 a.u. Z2. The total potential V in Eq. (1) consist of

the electric and vacuum-polarization potentials of a nucleus and a self-consistent

potential of electron subsystem. The local DF potential is chosen as the electron

subsystem potential [5]). In order to take into account a �nite nuclear size

e�ect we use the well-known Fermi-model for the distribution of the charge in a

nucleus ( [3]� [5]). As the detailed description of physical essence for the main

radiative e�ects, namely self-energy part of the Lamb shift, vacuum polarization

(VP) contribution, is presented in ( [3]- [6]), here we are limited by a original

description. The vacuum-polarization e�ect is taken into account by means of

the generalized Uehling-Serber potential with an e�ective account of the K�allen-

Sabry and Wichmann-Kroll high-order corrections on the parameter αk(α)n.

The cited potential can be written as follows:

U(r) = − 2α

3πr

∫ ∞
1

dt exp

(
−2rt

αZ

)(
1 +

1

2t2

) √
t2 − 1

t2
≡ − 2α

3πr
C(g), (3)
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where g = r
αZ . In our theory we use more exact approach, proposed in ( [5]). The

Uehling-Serber potential, determined as a quadrature 3, may be approximated

with high precision by a simple analytical function. The use of new approxi-

mation of the Uehling-Serber potential permits one to decrease the calculation

errors for this term down to 0.5 ÷ 1%. Besides, using such a simple analytical

function form for approximating the polarization potential allows its easy inclu-

sion into the general system of di�erential equations. This system includes also

the Dirac equations and the equations for matrix elements.

The system of equations (1) has two fundamental, solutions. Naturally one

should be interested in the solution regular at r → 0. The boundary values of

the correct solution are found by the �rst term s of the expansion into the Taylor

series (see details in [1]):

g =
(V (0)− Enχ)rαZ

2χ+ 1
; f = 1 at χ < 0,

f =

(
V (0)− Enχ −

2

α2Z2

)
αZ; g = 1 at χ > 0. (4)

The condition f, g → 0 at r → ∞ determines the quanti�ed energies of the

state Enχ. As usually (see details in [1]) Eq. (1) can be solved by the standard

Runge-Kutta method. The initial integration point r = R/107, where R is the

nucleus radius, the end of the integration interval is determined as rk ≈ 50n∗.

3 De�nition of the hyper�ne structure parameters

The formulas for determination of the hyper�ne structure parameters and the

expressions for the energy of the quadruple (Wq) and magnetic dipole (Wµ)

interactions, which de�ne a hyper�ne structure, are given in Refs. (c.f. [5],[14]),

namely:

Wq = [∆+ c(C + 1)]B;

Wµ = 0.5AC;

∆ = −4

3

(4χ− 1)(I + 1)

I − (I − 1)(2I − 1)
;

C = F (F + 1)− J(J + 1)− (I + 1). (5)

Here I is a spin of nucleus, F is a full momentum of system, J is a full elec-

tron momentum. Constants of the hyper�ne splitting are expressed through the
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standard radial integrals:

A =
4.32587 · 10−4Z2χgI

4χ2 − 1
(RA)−2;

B =
7.2878 · 10−7Z3Q

(4χ2 − 1)I(I − 1)
(RA)−3. (6)

Here gI is the Lande factor, Q is a quadruple momentum of nucleus (in Barn);

radial integrals are de�ned as follows ([3], [11]):

(RA)−2 =

∫ ∞
0

drr2F (r)G(r)U(1/r2, R);

(RA)−3 =

∫ ∞
0

drr2[F 2(r) +G(r)U(1/r2, R)] (7)

and calculated in the Coulomb units (= 3.57 · 1020Z2 m−2; = 6.174 · 1030Z3

m−3 for valuables of the corresponding dimension). The radial parts F and G of

two components of the Dirac function for electron, which moves in the potential

V (r,R)+U(r,R), are determined by solution of the Dirac equations (see above;

(1)). For calculation of potentials of the hyper�ne interaction U(1/rn, R), we

solve the following di�erential equations:

U(1/rn, R) = −ny(r,R)
rn+1

The functions dU(1/rn, R)/dR are calculated within the analogous procedure.

4 Some numerical results and conclusion

We have carried out the calculation of constants of the hyper�ne interaction: the

electric quadruple constant B, the magnetic dipole constant A with inclusion of

nuclear �niteness and the Uehling-Serber potential for Li-like ions. Analogous

calculations of the constant A for ns states of lithium- like ions were performed

in Refs. [3], [10]� [15]. In these papers other basis's of the relativistic orbitals

were used. Besides, another model for the charge distribution in the nucleus and

treating the QED corrections was used. In Table 1 the calculation results for the

constants of the hyper�ne splitting for the lowest excited states of Li-like ions

are presented. In Table 2 we present the numerical values of derivatives of the

one-electron characteristics on nuclear radius (in cm−1/cm) for 2l, 3l, 4l (l = 0,

1) states of the Li-like ions with minimally possible values of j:

∂〈|V |〉
∂R

= Z3DV, (cm−1/cm);

∂〈|U |〉
∂R

= Z5DU, (cm−1/cm);
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Table 1 Constants of the hyper�ne electron-nuclear interaction: A = Z3gI Ā cm−1, B =
Z3Q

I(2I−1)
B̄ cm−1

nlj Z 20 69 79 92

2s Ā 93 −03 176 −02 215 −02 314 −02
3s Ā 26 −03 51 −03 63 −03 90 −03
3s Ā 15 −03 19 −03 24 −03 36 −03
2p1/2 Ā 25 −03 56 −03 71 −03 105 −02
3p1/2 Ā 81 −04 16 −03 20 −03 31 −03
4p1/2 Ā 32 −04 72 −04 91 −04 11 −03
2p3/2 Ā 50 −04 67 −04 71 −04 72 −04

B̄ 9 −04 13 −04 15 −04 17 −04
3p3/2 Ā 13 −04 19 −04 21 −04 22 −04

B̄ 31 −05 51 −05 55 −05 65 −05
3d3/2 Ā 88 −05 10 −04 11 −04 12 −04

B̄ 51 −06 9 −05 10 −05 11 −05
4d3/2 Ā 35 −05 51 −05 55 −05 58 −05

B̄ 12 −06 44 −06 50 −06 56 −06
3d5/2 Ā 36 −05 48 −05 50 −05 52 −05

B̄ 21 −06 38 −06 39 −06 40 −06
4d5/2 Ā 15 −05 19 −05 20 −05 21 −05

B̄ 59 −07 15 −06 16 −06 17 −06

Table 2 Deriviatives of the one-electron characteristics on nuclear radius (in cm−1/cm) for
2s, 3s, 4s states of the Li-like ions

nlj Z 20 30 41 59 69 79 92

2s1/2 DV 10 +11 20 +11 41 +11 121 +12 223 +12 415 +12 967 +12
DU 15 +06 14 +06 16 +06 20 +06 25 +06 36 +06 64 +06
DA 15 +06 19 +06 24 +06 44 +06 63 +06 101 +07 197 +07

3s1/2 DV 28 +10 60 +10 12 +11 35 +11 65 +11 122 +12 293 +12
DU 45 +05 42 +05 44 +05 60 +05 81 +05 10 +06 18 +06
DA 44 +05 56 +05 74 +05 12 +06 18 +06 29 +06 57 +06

4s1/2 DV 11 +10 24 +10 51 +10 13 +11 26 +11 50 +11 121 +12
DU 18 +05 17 +05 18 +05 24 +05 32 +05 47 +05 80 +05
DA 18 +05 23 +05 30 +05 55 +05 81 +05 11 +05 23 +05

∂A

∂R
= Z4gIDA, (cm−1/cm).

Here 1 cm−1 is an energy unit and 1 cm is a length unit. Let us remember that

here V is a potential of the electron-nuclear interaction and U is the Uehling-

Serber vacuum-polarization potential.

Analysis of our data and comparison with available point-like theoretical

data ( [3], [10]� [12], [15]) shows that our approach provides a high-precise de-

termination of the corresponding spectral parameters for heavy three-electron

ions. It allows to believe that this approach to determination of the eigen values

spectra for the heavy atomic systems with an account of relativistic, nuclear and

radiative corrections can be used in a precise studying the energy parameters for



66 O.Yu.Khetselius

more complicated systems. Correspondingly, a procedure for quantization of the

stationary (quasistationary) states of the relativistic Dirac equation is naturally

correct in these cases too.
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