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1 Introduction

The real trees (R-trees) were introduced by Tits [12]. Since then, they found

numerous applications in di�erent parts of mathematics. In particular, Kirk

[9] established connections between R-trees and the hyperconvex metric spaces

introduced by Aronszajn and Panitchpakdi [1].

Some applications of R-trees are also described in [2]. In particular, it is

mentioned that R-trees arise also in the coarse setting of word-hyperbolic groups.

Outside of mathematics, R-trees are used in biology, medicine and computer

science. In particular, applications in biology and medicine are related to the

notion of phylogenetic tree [11].

In the paper [7], connections between geodesically complete rooted R-trees
and ultrametric spaces are established. The results of [7] are formulated in terms

of categorical equivalence. This makes reasonable studying functorial construc-

tions in appropriate categories of R-trees. In the present note, we consider the

hyperspaces and the spaces of probabilily measures of rooted R-trees that are
also rooted R-trees.
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A geodesic segment with endpoint x, y ∈ X is the image of an isometric

embedding α : [0, d(x, y)] → X. By [x, y] we denote a geodesic segment with

endpoints x and y.

De�nition 1 We say that a metric space (X, d) is a geodesic space if for every

x, y ∈ X there exists a geodesic joining x and y.

De�nition 2 A metric space (X, d) is called an R-tree if
1. (X, d) is a geodesic space;

2. if [x, y] ∩ [x, z] = {x}, then [y, z] = [x, y] ∪ [x, z];

3. for every x, y, z ∈ X there exists w ∈ X such that [x, y] ∩ [x, z] = [x,w].

It is known that a geodesic metric space X is an R-tree if and only if X is

0-hyperbolic. It is also known that a geodesic space is an R-tree if and only if

for every two distinct points x, y of this space there exists a unique arc with

endpoints x, y.

De�nition 3 A rooted R-tree consists of an R-tree (X, d) and a point x0 ∈ X
called the root.

De�nition 4 A rooted R-tree (X, d, x0) is geodesically complete if every iso-

metric embedding f : [0, t] → X, where t > 0, with f(0) = x0, extends to an

isometric embedding f̄ : [0,∞)→ X.

In this case the map f̄ is said to be a geodesic ray.

Given a rooted R-tree (X, d, x0), we let |x| = d(x, x0), for every x ∈ X. For

every t > 0, let Xt = {y ∈ X | |y| = t} and X≤t = ∪{Xs | s ≤ t}. If 0 ≤ s ≤ t,

we de�ne a map πts : Xt → Xs by the condition πts(x) = y if {y} = [x, x0]∩Xs.

Remark that πts is uniquely determined.

Also, we de�ne a retraction πt : X → X≤t by the condition πt(x) = πst(x),

for every x ∈ Xs, where s ≥ t.
Recall that a metric % on a set Z is said to be an ultrametric if it satis�es

the following strong triangle inequality:

%(x, y) ≤ max{%(x, z), %(z, y)}, x, y, z ∈ Z.

Lemma 1 The restriction of the metric d onto Xt is an ultrametric.

Proof Let x, y, z ∈ Xt. There exist a, b ∈ X such that [x, x0] ∩ [y, x0] = [a, x0],

[y, x0]∩[z, x0] = [b, x0]. Without loss of generality, one may suppose that [b, x0] ⊂
[a, x0]. Then [x, a] ∪ [a, b] ∪ [b, z] is a geodesic segment containing x and z.
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Since d(x, y) = 2d(x, a), d(y, z) = 2d(y, b), and

d(x, z) = d(x, a) + d(a, b) + d(b, z) = d(x, b) + d(b, z),

we conclude that d(x, z) ≤ d(y, z) = max{d(x, y), d(y, z)}.

Denote by R-TREE the category whose objects are rooted R-trees and whose
morphisms are | · |-preserving continuous maps.

2 Hyperspaces

Given a metric space (X, d), by expX we denote the hyperspace of X, i.e. the

set of all nonempty compact subsets of X. We endow expX with the Hausdor�

metric dH ,

dH(A,B) = inf{r > 0 | A ⊂ Or(B), B ⊂ Or(A)},

where Or(C) denotes the r-neighborhood of C ∈ expX. For every n ∈ N, denote
by expnX the subspace

{A ∈ expX | the cardinality of A is at most n}

of expX.

In the sequel, we suppose that (X, d, x0) is a rooted R-tree. Let

˜expX = {A ∈ expX | A ⊂ Xt for some t > 0}.

Given A ∈ ˜expX, we write |A| = t whenever A ⊂ Xt. By d̃H we denote the

restriction of the Hausdor� metric onto the subspace ˜expX.

Let us consider the function d̃ : ˜expX × ˜expX → R de�ned as follows:

d̃(A,B) = inf{|A|+ |B| − 2u | π|A|u(A) = π|B|u(B)}.

Lemma 1 The metric ˜expX on ˜expX coincides with the function d̃.

Proof Let A,B ∈ ˜expX, |A| = t, |B| = s. Suppose that d̃(A,B) = r, then there

exists a unique u ∈ R+ such that (t− u) + (s− u) = r Ñ� πtu(A) = πsu(B).

Let a ∈ A, then there exists b ∈ B such that πtu(a) = πsu(b). We conclude

that d(a, b) = t+ s− 2u = r.

Similarly, for every b ∈ B there exists a ∈ A such that d(a, b) = r.

Summing up, d̃H(A,B) ≤ r.
Conversely, if d̃H(A,B) ≤ r, then for every a ∈ A there exists b ∈ B such

that d(a, b) ≤ r. Let [a, b] be a geodesic segment connecting a and b. Let c be

a point of this segment with the minimal norm. Then t − |c| + s − |c| ≤ r and

therefore |c| ≥ u = 1
2 (t+ s− r).

It is easy to see that then πtu(A) = πsu(B), and therefore d̃(A,B) ≤ r.
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Corollary 1 The space ˜expXt is zero-dimensional for every t > 0.

Proposition 1 The map | · | : ˜expX → R+ is nonexpanding.

Proof Let A,B ∈ ˜expX, |A| = t, |B| = s. Then there exists r ≤ min{t, s} such
that

d̃H(A,B) = |t− r|+ |s− r| = |t− r|+ |r − s| ≥ |t− r + r − s| = |t− s|

and we are done.

Proposition 2 For every R-tree X the space ˜expX is geodesic.

Proof Let A,B ∈ ˜expX, |A| = t, |B| = s, and d̃H(A,B) = c. Then there exists

r ≤ min{t, s} such that πtr(A) = πsr(B) and |t− r|+ |s− r| = c.

Consider a map γ : [0, c]→ ˜expX de�ned by the formula:

γ(x) =

{
πt,t−x(A), if x ∈ [0, t− r],

πs,s−c+x(B), if x ∈ [t− r, c].

Then γ(0) = πt,t(A) = A, γ(c) = πs,s(B) = B.

It is easy to see that γ is a geodesic segment that connects A and B.

Proposition 3 Let γ : [0, 1] → ˜expX be an embedding. Then the function t 7→
|γ(t)| satis�es one of the three conditions:

1. it is increasing;

2. it is decreasing;

3. it is decreasing on [0, t0] and is increasing on [t0, 1], for some t0 ∈ [0, 1].

Proof If none of the condition holds, then there exist t1, t2 ∈ [0, 1], t1 < t2, for

which |γ(t1)| = |γ(t2)| and |γ(t)| ≥ |γ(t1)|, for all t ∈ [t1, t2].

Let |γ(t1)| = c. Then the map t 7→ πcγ(t), t ∈ [t1, t2], is a map into a zero-

dimensional space, and therefore is a constant map. Thus, γ(t1) = γ(t2). This

contradicts to the fact that γ is an embedding.

Proposition 4 The space ˜expX does not contain an embedded S1.

Proof Otherwise, there exist A,B ∈ ˜expX and a geodesic γ : [0, dH(A,B)] such

that |γ(t)| ≥ |A| = |B|, for every t ∈ [0, dH(A,B)]. However, this contradicts to

Proposition 3.

Corollary 2 The space ˜expX is an R-tree.

Proof This follows from the known characterization of R-trees; see, e.g., [10].
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Proposition 5 The set ˜expX is a closed subset in the hyperspace expX.

Proof Since the map f : X → R+, f(x) = |x|, is continuous, so is the map

exp f : expX → expR+. Then

˜expX = (exp f)−1({{t} | t ∈ R+}) = (exp f)−1 exp1(R+)

and therefore is closed.

Corollary 3 For every complete rooted R-tree X, the R-tree ˜expX is complete.

The following example demonstrates that the R-tree ˜expX is not geodesically

complete even for a geodesically complete R-tree X. Let X = {(x, y) ∈ R2 | x ∈
[0, 1], y = 0} ∪ {(x, y) ∈ R2 | x ∈ {1} ∪ {(n− 1)/n | n ∈ N}, y ∈ R+}, we endow
X with the geodesic metric inherited from R2.

We suppose that (0, 0) is the root. Then X1 is homeomorphic to a convergent

sequence. It is easy to see that, for every r > 0, the space X1+r is a countable

discrete space.

De�ne γ : [0, 1] → ˜expX by the formula γ(t) = Xt. Then this geodesic seg-

ment cannot be extended onto the set R+.

The hyperspace construction determines an endofunctor in the category

R-TREE.

3 Probability measures on R-trees

Let P (X) denote the set of probability measures of compact support on a space

X. It is known that the construction of probability measures of compact support

determines a functor on the category of Tychonov spaces and continuous maps

[3]. If (X, d) is a metric space, then the set P (X) can be endowed with the

Kantorovich metric [8]; if d is an ultrametric, then the set P (X) can be endowed

with an ultrametric dHV ,

dHV (µ, ν) = inf{r > 0 | µ(Br(x)) = ν(Br(x)), for every x ∈ X}

(see [5,13]; here Br(x) denotes the r-ball centered at x). Some categorical prop-

erties of this metric were investigated in [6].

If X is a rooted R-tree, we let

P̃ (X) = {µ ∈ P (X) | supp(µ) ∈ ˜expX}.

Given µ ∈ P̃ (X), let |µ| = |supp(µ)|.
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We endow P̃ (X) with a metric d̂:

d̂(µ, ν) = inf{|µ|+ |ν| − 2s | s ∈ [0,min{|µ|, |ν|}], P (πs)(µ) = P (πs)(ν)}.

Note �rst that the function d̂ is well-de�ned. Indeed, P (π0)(µ) = P (π0)(ν) = δx0
,

for every µ, ν ∈ P̃ (X).

If d̂(µ, ν) = 0, then there exists a sequence (si) in R+ such that |µ| + |ν| −
2si → 0 and si ≤ min{|µ|, |ν|}. This implies, in particular, that limi→∞ si =

|µ| = |ν|.
Since the sequence of maps (πsi) uniformly converges to π|µ|, we obtain

µ =P (π|µ|)(µ) = P ( lim
i→∞

πsi)(µ) = lim
i→∞

P (πsi)(µ)

= lim
i→∞

P (πsi)(ν) = P ( lim
i→∞

πsi)(ν) = ν.

Symmetry of the function d̂ is obvious.

We are going to verify the triangle inequality. Let µ, ν, τ ∈ P̃ (X), then there

exist sequences

si ∈ [0,min{|µ|, |ν|}], ti ∈ [0,min{|ν|, |τ |}]

such that

P (πsi)(µ) = P (πsi)(ν), P (πti)(ν)P (πti)(τ)

and

d̂(µ, ν) = lim
i→∞

(|µ|+ |ν| − 2si), d̂(ν, τ) = lim
i→∞

(|ν|+ |τ | − 2ti).

Without loss of generality, one may assume that si ≤ ti, for all i ∈ N. Then
P (πsi)(µ) = P (πsi)(ν) = P (πsi)(τ) and we obtain

d̂(µ, τ) ≤ lim
i→∞

(|µ|+ |τ | − 2si) ≤ lim
i→∞

(|µ|+ |ν| − 2si + |ν|+ |τ | − 2ti)

(since 2|ν| − 2ti ≥ 0)

≤ d̂(µ, ν) + d̂(ν, τ).

Proposition 1 The restriction of the metric d̂ on the set P̃ (X)t is an ultramet-

ric for every t ∈ R+.

Proof If µ, ν, τ ∈ P̃ (X)t, then there exist si, ti ∈ R+ such that

P (πsi)(µ) = P (πsi)(ν), P (πti)(ν)P (πti)(τ)

and

d̂(µ, ν) = lim
i→∞

(|µ|+ |ν| − 2si), d̂(ν, τ) = lim
i→∞

(|ν|+ |τ | − 2ti).

Without loss of generality, one may assume that si ≤ ti, for all i ∈ N. Then
P (πsi)(µ) = P (πsi)(ν) = P (πsi)(τ) and we obtain

d̂(µ, τ) ≤ max{d̂(µ, ν), d̂(ν, τ)}.
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We can prove even more, namely

Proposition 2 The restriction of the metric d̂ on the set P̃ (X)t coincides with

the metric dHV , for every t ∈ R+.

Proof Suppose that dHV (µ, ν) < r. Then, for every x ∈ X, µ(Br(x)) = ν(Br(x)).

We are going to show that P (πt,t−(r/2))(µ) = P (πt,t−(r/2))(ν).

Indeed,

P (πt,t−(r/2))(µ) =

k∑
i=1

µ(Br(xi))δπt,t−(r/2)(xi), (1)

where x1, . . . , xk ∈ supp(µ) are such that {Br(xi) | i = 1, . . . , k} is a disjoint

cover of supp(µ). It is easy to see that the right-hand side is well-de�ned, i.e.

does not depend on the choice of x1, . . . , xk. Applying the same arguments to

the measure ν one easily concludes that the right-hand side of (1) is equal to

P (πt,t−(r/2))(ν).

On the other hand, suppose that d̂(µ, ν) < r. Then P (πt,t−(r/2))(µ) =

P (πt,t−(r/2))(ν) and therefore, for every x ∈ Xt−(r/2) and every ε > 0, we have

P (πt,t−(r/2))(µ)(Bε(x)) = P (πt,t−(r/2))(ν)(Bε(x)).

Then µ(Br+ε(x)) = ν(Br+ε(x)), for every x ∈ X and therefore dHV (µ, ν) ≤ r+ε,
for every ε > 0. Thus, dHV (µ, ν) ≤ r.

Denote by d̃ the restriction of the metric d̂ onto P̃ (X).

Theorem 1 The metric space (P̃ (X), d̃) is an R-tree.

Proof The proof of this fact can be performed analogously to that of Corollary

3. We use the fact that the metric dHV is an ultrametric.

Proposition 3 The map supp: P̃ (X)→ ˜expX is nonexpanding.

Proof Suppose that d̂(µ, ν) < r, for some r > 0. Then there exists c ∈
[0,min{|µ|, |ν|}] such that P (πc)(µ) = P (πc(ν) and |µ|+ |ν| − 2c < r.

Then |supp(µ)| = |µ|, |supp(ν)| = |ν| and πc(supp(µ)) = πc(supp(ν)),

whence

d̃H(supp(µ), supp(ν)) ≤ |supp(µ)|+ |supp(ν)| < r.

Theorem 2 Let X be a complete R-tree. Then P̃ (X) is also a complete R-tree.
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Proof Let (µi) be a Cauchy sequence in P̃ (X). Since, by Corollary 3, the space

˜expX is complete and the map supp is nonexpanding, the Cauchy sequence

(supp(µi)) is convergent.

We follow the idea of the proof of [5, Theorem 3.5]. De�ne µ ∈ P (X) as

follows. Let x ∈ A and r > 0. We put µ(Br(x)) = limi→∞ µi(Br(x)).

Since (µi) is a Cauchy sequence, there exists n0 ∈ N such that µm(Br(x)) =

µn(Br(x)), for every m,n > n0. This means that the sequence µi(Br(x)) is

eventually constant and, therefore, is convergent. Clearly, the function µ, which

is de�ned on the balls, uniquely extends to a probability measure; we keep the

notation µ for the latter.

By the de�nition, µ = limi→∞ µi.

Similarly as above one can demonstrate that the R-tree P̃ (X) is not neces-

sarily geodesically complete even if so is X. Actually, the example at the end of

the previous section works.

The construction of space of probability measures determines an endofunctor

in the category R-TREE. The class of maps supp comprises a natural transfor-

mation from ˜exp to P̃ .

4 Open problems

In [7], the category of geodesically complete, rooted R-trees and equivalence

classes of isometries at in�nity is introduced. This leads to the following question.

Question 1 Are there counterparts of the hyperspace functor and the probability

measure functor in the mentioned category?

The notion of ultrametric has its counterpart in the theory of fuzzy metric

spaces (see [4]). A continuous operation (a, b) 7→ a ∗ b : [0, 1] × [0, 1] → [0, 1] is

called a t-norm, if ∗ is associative, commutative, monotonic and 1 is its neutral

element.

A function M : X ×X × (0,∞)→ [0, 1] is said to be a fuzzy metric on a set

X, if it satis�es the following conditions: (i) M(x, y, t) > 0; (ii) M(x, y, t) = 1

if and only if x = y; (iii) M(x, y, t) = M(y, x, t); (iv) M(x, y, t) ∗M(y, z, s) ≤
M(x, z, t+ s); (v) the function M(x, y,−) : (0,∞)→ [0, 1] is continuous.

The triple (X,M, ∗) is called a fuzzy metric space ([3, 4]). If condition (iv) in

the de�nition of a fuzzy metric M : X ×X × (0,∞)→ [0, 1] is replaced with the

stronger condition (iv') M(x, y, t) ∗M(y, z, t) ≤M(x, z, t), then this function is

called a fuzzy ultrametric.
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Ametric space (X, d) is an R-tree if and only if it is complete, path-connected,

and satis�es the so-called four point condition, that is,

d(x1, x2) + d(x3, x4) ≤ max{d(x1, x3) + d(x2, x4), d(x1, x4) + d(x2, x3)}

for all x1, . . . , x4 ∈ X.

This leads to the following question.

Question 2 Is there a fuzzy counterpart of the four point condition? of the notion

of R-tree?
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